ترغب بنشر مسار تعليمي؟ اضغط هنا

Decay process of quantum open system at finite-temperature

124   0   0.0 ( 0 )
 نشر من قبل Yb Gao
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Starting from the formal solution to the Heisenberg equation, we revisit an universal model for a quantum open system with a harmonic oscillator linearly coupled to a boson bath. The analysis of the decay process for a Fock state and a coherent state demonstrate that this method is very useful in dealing with the problems in decay process of the open system. For finite temperature, the calculations of the reduced density matrix and the mean excitation number for the open system show that an initial coherent state will evolve into a temperature-dependant coherent state after tracing over the bath variables. Also in short-time limit, a temperature-dependant effective Hamiltonian for the open system characterizes the decay process of the open system.



قيم البحث

اقرأ أيضاً

To use quantum systems for technological applications we first need to preserve their coherence for macroscopic timescales, even at finite temperature. Quantum error correction has made it possible to actively correct errors that affect a quantum mem ory. An attractive scenario is the construction of passive storage of quantum information with minimal active support. Indeed, passive protection is the basis of robust and scalable classical technology, physically realized in the form of the transistor and the ferromagnetic hard disk. The discovery of an analogous quantum system is a challenging open problem, plagued with a variety of no-go theorems. Several approaches have been devised to overcome these theorems by taking advantage of their loopholes. Here we review the state-of-the-art developments in this field in an informative and pedagogical way. We give the main principles of self-correcting quantum memories and we analyze several milestone examples from the literature of two-, three- and higher-dimensional quantum memories.
We propose a variational approach for computing the macroscopic entanglement in a many-body mixed state, based on entanglement witness operators, and compute the entanglement of formation (EoF), a mixed-state generalization of the entanglement entrop y, in single- and two-channel Kondo systems at finite temperature. The thermal suppression of the EoF obeys power-law scaling at low temperature. The scaling exponent is halved from the single- to the two-channel system, which is attributed, using a bosonization method, to the non-Fermi liquid behavior of a Majorana fermion, a half of a complex fermion, emerging in the two-channel system. Moreover, the EoF characterizes the size and power-law tail of the Kondo screening cloud of the single-channel system.
The description of an open quantum systems decay almost always requires several approximations as to remain tractable. Here, we first revisit the meaning, domain and seeming contradictions of a few of the most widely used of such approximations: semi -group Markovianity, linear response theory, Wigner--Weisskopf and rotating-wave approximation. Secondly, we derive an effective time-dependent decay theory and corresponding generalized quantum regression relations for an open quantum system linearly coupled to an environment. This theory covers all timescales, and subsumes the Markovian and linear-response results as limiting cases. Finally, we apply our theory to the phenomenon of quantum friction.
248 - G. Konya , D. Nagy , G. Szirmai 2012
Laser-driven Bose-Einstein condensate of ultracold atoms loaded into a lossy high-finesse optical resonator exhibits critical behavior and, in the thermodynamic limit, a phase transition between stationary states of different symmetries. The system r ealizes an open-system variant of the celebrated Dicke-model. We study the transition for a finite number of atoms by means of a Hartree-Fock-Bogoliubov method adapted to a damped-driven open system. The finite-size scaling exponents are determined and a clear distinction between the non-equilibrium and the equilibrium quantum criticality is found.
125 - Bassano Vacchini 2019
We briefly examine recent developments in the field of open quantum system theory, devoted to the introduction of a satisfactory notion of memory for a quantum dynamics. In particular, we will consider a possible formalization of the notion of non-Ma rkovian dynamics, as well as the construction of quantum evolution equations featuring a memory kernel. Connections will be drawn to the corresponding notions in the framework of classical stochastic processes, thus pointing to the key differences between a quantum and classical formalization of the notion of memory effects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا