ترغب بنشر مسار تعليمي؟ اضغط هنا

103 - Y. H. Kim , N. Kaur , B. M. Atkins 2009
At a quantum critical point (QCP) -- a zero-temperature singularity in which a line of continuous phase transition terminates -- quantum fluctuations diverge in space and time, leading to exotic phenomena that can be observed at non-zero temperatures . Using a quantum antiferromagnet, we present calorimetric evidence that nuclear spins frozen in a high-temperature metastable state by temperature quenching are annealed by quantum fluctuations near the QCP. This phenomenon, with readily detectable heat release from the nuclear spins as they are annealed, serves as an excellent marker of a quantum critical region around the QCP and provides a probe of the dynamics of the divergent quantum fluctuations.
211 - H. Tsujii , C. R. Rotundu , T. Ono 2007
Specific heat and the magnetocaloric effect are used to probe the field-induced up-up-down phase of Cs2CuBr4, a quasi-two-dimensional spin-1/2 triangular antiferromagnet with near-maximal frustration. The shape of the magnetic phase diagram shows tha t the phase is stabilized by quantum fluctuations, not by thermal fluctuations as in the corresponding phase of classical spins. The magnon gaps determined from the specific heat are considerably larger than those expected for a Heisenberg antiferromagnet, probably due to the presence of a small Dzyaloshinskii-Moriya interaction.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا