ترغب بنشر مسار تعليمي؟ اضغط هنا

175 - Yan-Kui Bai , Ming-Yong Ye , 2009
We analyze the entanglement distribution and the two-qubit residual entanglement in multipartite systems. For a composite system consisting of two cavities interacting with independent reservoirs, it is revealed that the entanglement evolution is res tricted by an entanglement monogamy relation derived here. Moreover, it is found that the initial cavity-cavity entanglement evolves completely to the genuine four-partite cavities-reservoirs entanglement in the time interval between the sudden death of cavity-cavity entanglement and the birth of reservoir-reservoir entanglement. In addition, we also address the relationship between the genuine block-block entanglement form and qubit-block form in the interval.
Based on quantum complementary relations (QCRs) and a purification scenario, we analyze a class of N-qubit mixed states that are entangled but do not have two-, and genuine three-, four-, ..., N-qubit entanglements. It is shown that entanglement (one -tangle or negativity) in these mixed states is closely related to the QCR entanglement of their purified states. In particular, it is elaborated that when the mixed state does not have multipartite tangles (two- and higher tangles), its entanglement is actually a kind of genuine multipartite QCR entanglement between the system and its environment.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا