ترغب بنشر مسار تعليمي؟ اضغط هنا

We consider physical properties of a superconductor with a recently proposed type of odd-frequency pairing that exhibits diamagnetic Meissner response (odd-dia state). Such a state was suggested in order to address stability issues arising in an odd- frequency superconducting state with paramagnetic Meissner response (odd-para state). Assuming the existence of an odd-dia state (due to a proper retarded interaction), we study its coexistence with an odd-para state. The latter is known to be generated as an induced superconducting component in, e.g., singlet superconductor/ferromagnet proximity structures or triplet superconductor/normal metal systems. Calculating the superfluid density of the mixed odd-para/odd-dia state and the Josephson current between the odd-para and odd-dia states, we find that the expressions for the currents in both cases have non-vanishing imaginary contributions and are therefore unphysical. We show that a realization of the odd-dia state implies the absence of a Hamiltonian description of the system, and suggest that there exists no physically realizable perturbation that could give rise to the spontaneous symmetry breaking necessary for an actual realization of the odd-dia superconducting state.
The spin valve effect for the superconducting current based on the superconductor/ferromagnet proximity effect has been studied for a CoO_x/Fe1/Cu/Fe2/Cu/Pb multilayer. The magnitude of the effect $Delta T_c$ = T_c^{AP} - T_c^{P}, where T_c^{P} and T _c^{AP} are the superconducting transition temperatures for the parallel (P) and antiparallel (AP) orientation of magnetizations, respectively, has been measured for different thicknesses of the Fe1 layer d_{Fe1}. The obtained dependence of the effect on d_{Fe1} reveals that $Delta T_c$ can be increased in comparison with the case of a half-infinite Fe1 layer considered by the previous theory. A maximum of the spin valve effect occurs at d_{Fe1} ~ d_{Fe2}. At the optimal value of d_{Fe1}, almost full switching from the normal to the superconducting state when changing the mutual orientation of magnetizations of the iron layers Fe1 and Fe2 from P to AP is demonstrated.
We have studied the dependence of the superconducting (SC) transition temperature on the mutual orientation of magnetizations of Fe1 and Fe2 layers in the spin valve system CoO_x/Fe1/Cu/Fe2/Pb. We find that this dependence is nonmonotonic when passin g from the parallel to the antiparallel case and reveals a distinct minimum near the orthogonal configuration. The analysis of the data in the framework of the SC triplet spin valve theory gives direct evidence for the long-range triplet superconductivity arising due to noncollinearity of the two magnetizations.
Magnetic impurities affect the spectrum of excitations of a superconductor and thus influence its impedance. We concentrate on the dissipative part of the surface impedance. We investigate its dependence on frequency, the density and strength of magn etic impurities, and the density and temperature of quasiparticles. Even a small concentration of weak magnetic impurities significantly modifies the excitation spectrum in the vicinity of the BCS gap. Therefore, we give special attention to the absorption threshold behavior at zero temperature and to the low-frequency absorption by quasiparticles. The discrete energy states introduced at low density of magnetic impurities may serve as traps for nonequilibrium quasiparticles, reducing the absorption in some range of low radiation frequencies.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا