ﻻ يوجد ملخص باللغة العربية
The spin valve effect for the superconducting current based on the superconductor/ferromagnet proximity effect has been studied for a CoO_x/Fe1/Cu/Fe2/Cu/Pb multilayer. The magnitude of the effect $Delta T_c$ = T_c^{AP} - T_c^{P}, where T_c^{P} and T_c^{AP} are the superconducting transition temperatures for the parallel (P) and antiparallel (AP) orientation of magnetizations, respectively, has been measured for different thicknesses of the Fe1 layer d_{Fe1}. The obtained dependence of the effect on d_{Fe1} reveals that $Delta T_c$ can be increased in comparison with the case of a half-infinite Fe1 layer considered by the previous theory. A maximum of the spin valve effect occurs at d_{Fe1} ~ d_{Fe2}. At the optimal value of d_{Fe1}, almost full switching from the normal to the superconducting state when changing the mutual orientation of magnetizations of the iron layers Fe1 and Fe2 from P to AP is demonstrated.
The Andreev current and the subgap conductance in a superconductor/ insulator/ ferromagnet (SIF) structure in the presence of a small spin-splitting field show novel interesting features (A. Ozaeta et al., Phys. Rev. B 86, 060509(R), 2012). For examp
Competition between superconducting and ferromagnetic ordering at interfaces between ferromagnets (F) and superconductors (S) gives rise to several proximity effects such as odd-triplet superconductivity and spin-polarized supercurrents. A prominent
Superconducting spin valves based on the superconductor/ferromagnet (S/F) proximity effect are considered to be a key element in the emerging field of superconducting spintronics. Here, we demonstrate the crucial role of the morphology of the superco
We have investigated CuNi/Nb/CuNi trilayers, as have been recently used as the core structure of a spin-valve like device [J. Y. Gu et al., Phys. Rev. Lett. 89, 267001 (2002)] to study the effect of magnetic configurations of the CuNi layers on the c
We investigate the subgap transport properties of a S-F-Ne structure. Here S (Ne) is a superconducting (normal) electrode, and F is either a ferromagnet or a normal wire in the presence of an exchange or a spin- splitting Zeeman field respectively. B