ترغب بنشر مسار تعليمي؟ اضغط هنا

SU(N) symmetry can emerge in a quantum system with N single-particle spin states when spin is decoupled from inter-particle interactions. So far, only indirect evidence for this symmetry exists, and the scattering parameters remain largely unknown. H ere we report the first spectroscopic observation of SU(N=10) symmetry in Sr-87 using the state-of-the-art measurement precision offered by an ultra-stable laser. By encoding the electronic orbital degree of freedom in two clock states, while keeping the system open to 10 nuclear spin sublevels, we probe the non-equilibrium two-orbital SU(N) magnetism via Ramsey spectroscopy of atoms confined in an array of two-dimensional optical traps. We study the spin-orbital quantum dynamics and determine all relevant interaction parameters. This work prepares for using alkaline-earth atoms as test-beds for iconic orbital models.
As the temperature of a many-body system approaches absolute zero, thermal fluctuations of observables cease and quantum fluctuations dominate. Competition between different energies, such as kinetic energy, interactions or thermodynamic potentials, can induce a quantum phase transition between distinct ground states. Near a continuous quantum phase transition, the many-body system is quantum critical, exhibiting scale invariant and universal collective behavior cite{Coleman05Nat, Sachdev99QPT}. Quantum criticality has been actively pursued in the study of a broad range of novel materials cite{vdMarel03Nat, Lohneysen07rmp, G08NatPhys, Sachdev08NatPhys}, and can invoke new insights beyond the Landau-Ginzburg-Wilson paradigm of critical phenomena cite{Senthil04prb}. It remains a challenging task, however, to directly and quantitatively verify predictions of quantum criticality in a clean and controlled system. Here we report the observation of quantum critical behavior in a two-dimensional Bose gas in optical lattices near the vacuum-to-superfluid quantum phase transition. Based on textit{in situ} density measurements, we observe universal scaling of the equation of state at sufficiently low temperatures, locate the quantum critical point, and determine the critical exponents. The universal scaling laws also allow determination of thermodynamic observables. In particular, we observe a finite entropy per particle in the critical regime, which only weakly depends on the atomic interaction. Our experiment provides a prototypical method to study quantum criticality with ultracold atoms, and prepares the essential tools for further study on quantum critical dynamics.
Critical behavior developed near a quantum phase transition, interesting in its own right, offers exciting opportunities to explore the universality of strongly-correlated systems near the ground state. Cold atoms in optical lattices, in particular, represent a paradigmatic system, for which the quantum phase transition between the superfluid and Mott insulator states can be externally induced by tuning the microscopic parameters. In this paper, we describe our approach to study quantum criticality of cesium atoms in a two-dimensional lattice based on in situ density measurements. Our research agenda involves testing critical scaling of thermodynamic observables and extracting transport properties in the quantum critical regime. We present and discuss experimental progress on both fronts. In particular, the thermodynamic measurement suggests that the equation of state near the critical point follows the predicted scaling law at low temperatures.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا