ترغب بنشر مسار تعليمي؟ اضغط هنا

A detailed defect energy level map was investigated for heterostructures of 26 unit cells of LaAlO3 on SrTiO3 prepared at a low oxygen partial pressure of 10-6 mbar. The origin is attributed to the presence of dominating oxygen defects in SrTiO3 subs trate. Using femtosecond laser spectroscopy, the transient absorption and relaxation times for various transitions were determined. An ultrafast relaxation process of 2-3 picosecond from the conduction band to the closest defect level and a slower process of 70-92 picosecond from conduction band to intra-band defect level were observed. The results are discussed on the basis of propose defect-band diagram.
Recently, x-ray illumination, using synchrotron radiation, has been used to manipulate defects, stimulate self-organization and to probe their structure. Here we explore a method of defect-engineering low-dimensional systems using focused laboratory- scale X-ray sources. We demonstrate an irreversible change in the conducting properties of the 2-dimensional electron gas at the interface between the complex oxide materials LaAlO3 and SrTiO3 by X-ray irradiation. The electrical resistance is monitored during exposure as the irradiated regions are driven into a high resistance state. Our results suggest attention shall be paid on electronic structure modification in X-ray spectroscopic studies and highlight large-area defect manipulation and direct device patterning as possible new fields of application for focused laboratory X-ray sources.
Atomically sharp oxide heterostructures often exhibit unusual physical properties that are absent in the constituent bulk materials. The interplay between electrostatic boundary conditions, strain and dimensionality in ultrathin epitaxial films can r esult in monolayer-scale transitions in electronic or magnetic properties. Here we report an atomically sharp antiferromagnetic-to-ferromagnetic phase transition when atomically growing polar antiferromagnetic LaMnO3 (001) films on SrTiO3 substrates. For a thickness of five unit cells or less, the films are antiferromagnetic, but for six unit cells or more, the LaMnO3 film undergoes a phase transition to a ferromagnetic state over its entire area, which is visualized by scanning superconducting quantum interference device microscopy. The transition is explained in terms of electronic reconstruction originating from the polar nature of the LaMnO3 (001) films. Our results demonstrate how new emergent functionalities can be visualized and engineered in atomically thick oxide films at the atomic level.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا