ترغب بنشر مسار تعليمي؟ اضغط هنا

Two solar type II radio bursts, separated by ~24 hours in time, are examined together. Both events are associated with coronal mass ejections (CMEs) erupting from the same active region (NOAA 11176) beneath a well-observed helmet streamer. We find th at the type II emissions in both events ended once the CME/shock fronts passed the white-light streamer tip, which is presumably the magnetic cusp of the streamer. This leads us to conjecture that the closed magnetic arcades of the streamer may play a role in electron acceleration and type II excitation at coronal shocks. To examine such a conjecture, we conduct a test-particle simulation for electron dynamics within a large-scale partially-closed streamer magnetic configuration swept by a coronal shock. We find that the closed field lines play the role of an electron trap, via which the electrons are sent back to the shock front for multiple times, and therefore accelerated to high energies by the shock. Electrons with an initial energy of 300eV can be accelerated to tens of keV concentrating at the loop apex close to the shock front with a counter-streaming distribution at most locations. These electrons are energetic enough to excite Langmuir waves and radio bursts. Considering the fact that most solar eruptions originate from closed field regions, we suggest that the scenario may be important to the generation of more metric type IIs. This study also provides an explanation to the general ending frequencies of metric type IIs at or above 20-30 MHz and the disconnection issue between metric and interplanetary type IIs.
66 - Yao Chen , Guohui Du , Li Feng 2014
Simultaneous radio and extreme ultraviolet (EUV)/white-light imaging data are examined for a solar type II radio burst occurring on 2010 March 18 to deduce its source location. Using a bow-shock model, we reconstruct the 3-dimensional EUV wave front (presumably the type-II emitting shock) based on the imaging data of the two STEREO spacecraft. It is then combined with the Nanc{c}ay radio imaging data to infer the 3-dimensional position of the type II source. It is found that the type II source coincides with the interface between the CME EUV wave front and a nearby coronal ray structure, providing evidence that the type II emission is physically related to the CME-ray interaction. This result, consistent with those of previous studies, is based on simultaneous radio and EUV imaging data for the first time.
In this paper, with a survey through the Large Angle and Spectrometric Coronagraph (LASCO) data from 1996 to 2009, we present 11 events with plasma blobs flowing outwards sequentially along a bright coronal ray in the wake of a coronal mass ejection. The ray is believed to be associated with the current sheet structure that formed as a result of solar eruption, and the blobs are products of magnetic reconnection occurring along the current sheet. The ray morphology and blob dynamics are investigated statistically. It is found that the apparent angular widths of the rays at a fixed time vary in a range of 2.1-6.6 (2.0-4.4) degrees with an average of 3.5 (2.9) degrees at 3 (4) Rs, respectively, and the observed durations of the events vary from 12 h to a few days with an average of 27 h. It is also found, based on the analysis of blob motions, that 58% (26) of the blobs were accelerated, 20% (9) were decelerated, and 22% (10) moved with a nearly-constant speed. Comparing the dynamics of our blobs and those that are observed above the tip of a helmet streamer, we find that the speeds and accelerations of the blobs in these two cases differ significantly. It is suggested that these differences of the blob dynamics stem from the associated magnetic reconnection involving different magnetic field configurations and triggering processes.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا