ترغب بنشر مسار تعليمي؟ اضغط هنا

The maximum drop size of a permutation $pi$ of $[n]={1,2,ldots, n}$ is defined to be the maximum value of $i-pi(i)$. Chung, Claesson, Dukes and Graham obtained polynomials $P_k(x)$ that can be used to determine the number of permutations of $[n]$ wit h $d$ descents and maximum drop size not larger than $k$. Furthermore, Chung and Graham gave combinatorial interpretations of the coefficients of $Q_k(x)=x^k P_k(x)$ and $R_{n,k}(x)=Q_k(x)(1+x+cdots+x^k)^{n-k}$, and raised the question of finding a bijective proof of the symmetry property of $R_{n,k}(x)$. In this paper, we establish a bijection $varphi$ on $A_{n,k}$, where $A_{n,k}$ is the set of permutations of $[n]$ and maximum drop size not larger than $k$. The map $varphi$ remains to be a bijection between certain subsets of $A_{n,k}$. %related to the symmetry property. This provides an answer to the question of Chung and Graham. The second result of this paper is a proof of a conjecture of Hyatt concerning the unimodality of polynomials in connection with the number of signed permutations of $[n]$ with $d$ type $B$ descents and the type $B$ maximum drop size not greater than $k$.
An alternating permutation of length $n$ is a permutation $pi=pi_1 pi_2 ... pi_n$ such that $pi_1 < pi_2 > pi_3 < pi_4 > ...$. Let $A_n$ denote set of alternating permutations of ${1,2,..., n}$, and let $A_n(sigma)$ be set of alternating permutations in $A_n$ that avoid a pattern $sigma$. Recently, Lewis used generating trees to enumerate $A_{2n}(1234)$, $A_{2n}(2143)$ and $A_{2n+1}(2143)$, and he posed several conjectures on the Wilf-equivalence of alternating permutations avoiding certain patterns. Some of these conjectures have been proved by Bona, Xu and Yan. In this paper, we prove the two relations $|A_{2n+1}(1243)|=|A_{2n+1}(2143)|$ and $|A_{2n}(4312)|=|A_{2n}(1234)|$ as conjectured by Lewis.
The Springer numbers are defined in connection with the irreducible root systems of type $B_n$, which also arise as the generalized Euler and class numbers introduced by Shanks. Combinatorial interpretations of the Springer numbers have been found by Purtill in terms of Andre signed permutations, and by Arnold in terms of snakes of type $B_n$. We introduce the inversion code of a snake of type $B_n$ and establish a bijection between labeled ballot paths of length n and snakes of type $B_n$. Moreover, we obtain the bivariate generating function for the number B(n,k) of labeled ballot paths starting at (0,0) and ending at (n,k). Using our bijection, we find a statistic $alpha$ such that the number of snakes $pi$ of type $B_n$ with $alpha(pi)=k$ equals B(n,k). We also show that our bijection specializes to a bijection between labeled Dyck paths of length 2n and alternating permutations on [2n].
The Dirichlet series $L_m(s)$ are of fundamental importance in number theory. Shanks defined the generalized Euler and class numbers in connection with these Dirichlet series, denoted by ${s_{m,n}}_{ngeq 0}$. We obtain a formula for the exponential g enerating function $s_m(x)$ of $s_{m,n}$, where m is an arbitrary positive integer. In particular, for m>1, say, $m=bu^2$, where b is square-free and u>1, we prove that $s_m(x)$ can be expressed as a linear combination of the four functions $w(b,t)sec (btx)(pm cos ((b-p)tx)pm sin (ptx))$, where p is an integer satisfying $0leq pleq b$, $t|u^2$ and $w(b,t)=K_bt/u$ with $K_b$ being a constant depending on b. Moreover, the Dirichlet series $L_m(s)$ can be easily computed from the generating function formula for $s_m(x)$. Finally, we show that the main ingredient in the formula for $s_{m,n}$ has a combinatorial interpretation in terms of the m-signed permutations defined by Ehrenborg and Readdy. In principle, this answers a question posed by Shanks concerning a combinatorial interpretation for the numbers $s_{m,n}$.
We obtain a unification of two refinements of Eulers partition theorem respectively due to Bessenrodt and Glaisher. A specialization of Bessenrodts insertion algorithm for a generalization of the Andrews-Olsson partition identity is used in our combinatorial construction.
By introducing the notion of relative derangements of type $B$, also called signed relative derangements, which are defined in terms of signed permutations, we obtain a type $B$ analogue of the well-known relation between relative derangements and th e classical derangements. While this fact can be proved by using the principle of inclusion and exclusion, we present a combinatorial interpretation with the aid of the intermediate structure of signed skew derangements.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا