ترغب بنشر مسار تعليمي؟ اضغط هنا

The Generating Function for the Dirichlet Series $L_m(s)$

145   0   0.0 ( 0 )
 نشر من قبل William Y. C. Chen
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The Dirichlet series $L_m(s)$ are of fundamental importance in number theory. Shanks defined the generalized Euler and class numbers in connection with these Dirichlet series, denoted by ${s_{m,n}}_{ngeq 0}$. We obtain a formula for the exponential generating function $s_m(x)$ of $s_{m,n}$, where m is an arbitrary positive integer. In particular, for m>1, say, $m=bu^2$, where b is square-free and u>1, we prove that $s_m(x)$ can be expressed as a linear combination of the four functions $w(b,t)sec (btx)(pm cos ((b-p)tx)pm sin (ptx))$, where p is an integer satisfying $0leq pleq b$, $t|u^2$ and $w(b,t)=K_bt/u$ with $K_b$ being a constant depending on b. Moreover, the Dirichlet series $L_m(s)$ can be easily computed from the generating function formula for $s_m(x)$. Finally, we show that the main ingredient in the formula for $s_{m,n}$ has a combinatorial interpretation in terms of the m-signed permutations defined by Ehrenborg and Readdy. In principle, this answers a question posed by Shanks concerning a combinatorial interpretation for the numbers $s_{m,n}$.



قيم البحث

اقرأ أيضاً

118 - Alexey Kuznetsov 2019
We prove an analogue of the Lagrange Inversion Theorem for Dirichlet series. The proof is based on studying properties of Dirichlet convolution polynomials, which are analogues of convolution polynomials introduced by Knuth in [4].
116 - Stephen Kudla 2019
In this note, we consider special algebraic cycles on the Shimura variety S associated to a quadratic space V over a totally real field F, |F:Q|=d, of signature ((m,2)^{d_+},(m+2,0)^{d-d_+}), 1le d_+<d. For each n, 1le nle m, there are special cycles Z(T) in S, of codimension nd_+, indexed by totally positive semi-definite matrices with coefficients in the ring of integers O_F. The generating series for the classes of these cycles in the cohomology group H^{2nd_+}(S) are Hilbert-Siegel modular forms of parallel weight m/2+1. One can form analogous generating series for the classes of the special cycles in the Chow group CH^{nd_+}(S). For d_+=1 and n=1, the modularity of these series was proved by Yuan-Zhang-Zhang. In this note we prove the following: Assume the Bloch-Beilinson conjecture on the injectivity of Abel-Jacobi maps. Then the Chow group valued generating series for special cycles of codimension nd_+ on S is modular for all n with 1le nle m.
120 - Alexey Kuznetsov 2017
There exist many explicit evaluations of Dirichlet series. Most of them are constructed via the same approach: by taking products or powers of Dirichlet series with a known Euler product representation. In this paper we derive a result of a new flavo ur: we give the Dirichlet series representation to solution $f=f(s,w)$ of the functional equation $L(s-wf)=exp(f)$, where $L(s)$ is the L-function corresponding to a completely multiplicative function. Our result seems to be a Dirichlet series analogue of the well known Lagrange-Burmann formula for power series. The proof is probabilistic in nature and is based on Kendalls identity, which arises in the fluctuation theory of Levy processes.
We study a Dirichlet series in two variables which counts primitive three-term arithmetic progressions of squares. We show that this multiple Dirichlet series has meromorphic continuation to $mathbb{C}^2$ and use Tauberian methods to obtain counts fo r arithmetic progressions of squares and rational points on $x^2+y^2=2$.
205 - Kyu-Hwan Lee , Yichao Zhang 2012
Weyl group multiple Dirichlet series, introduced by Brubaker, Bump, Chinta, Friedberg and Hoffstein, are expected to be Whittaker coefficients of Eisenstein series on metaplectic groups. Chinta and Gunnells constructed these multiple Dirichlet series for all the finite root systems using the method of averaging a Weyl group action on the field of rational functions. In this paper, we generalize Chinta and Gunnells work and construct Weyl group multiple Dirichlet series for the root systems associated with symmetrizable Kac-Moody algebras, and establish their functional equations and meromorphic continuation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا