ترغب بنشر مسار تعليمي؟ اضغط هنا

We consider tritium beta decay with additional emission of light pseudoscalar or vector bosons coupling to electrons or neutrinos. The electron energy spectrum for all cases is evaluated and shown to be well estimated by approximated analytical expre ssions. We give the statistical sensitivity of KATRIN to the mass and coupling of the new bosons, both in the standard setup of the experiment as well as for future modifications in which the full energy spectrum of tritium decay is accessible.
We perform numerical fits of Grand Unified Models based on SO(10), using various combinations of 10-, 120- and 126-dimensional Higgs representations. Both the supersymmetric and non-supersymmetr
Advantages of the original symmetrical form of the parametrization of the lepton mixing matrix are discussed. It provides a conceptually more transparent description of neutrino oscillations and lepton number violating processes like neutrinoless dou ble beta decay, clarifying the significance of Dirac and Majorana phases. It is also ideal for parametrizing scenarios with light sterile neutrinos.
We analyze in detail the predictions of trimaximal neutrino mixing, which is defined by a mixing matrix with identical second column elements. This column is therefore identical to the second column in the case of tri-bimaximal mixing. We also genera lize trimaximal mixing by assuming that the other rows and columns of the mixing matrix individually have the same forms as for tri-bimaximal mixing. The phenomenology of these new mixing scenarios is studied. We emphasize how trimaximal mixings can be distinguished experimentally from broken tri-bimaximal mixing.
89 - Werner Rodejohann 2008
We propose a new parametrization for the quark and lepton mixing matrices: the two 12-mixing angles (the Cabibbo angle and the angle responsible for solar neutrino oscillations) are at zeroth order pi/12 and pi/5, respectively. The resulting 12-eleme nts in the CKM and PMNS matrices, V_{us} and U_{e2}, are in this order irrational but simple algebraic numbers. We note that the cosine of pi/5 is the golden ratio divided by two. The difference between pi/5 and the observed best-fit value of solar neutrino mixing is of the same order as the difference between the observed value and the one for tri-bimaximal mixing. In order to reproduce the central values of current fits, corrections to the zeroth order expressions are necessary. They are small and of the same order and sign for quarks and leptons. We parametrize the perturbations to the CKM and PMNS matrices in a triminimal way, i.e., with three small rotations in an order corresponding to the order of the rotations in the PDG-description of mixing matrices.
To address the issue of whether tri-bimaximal mixing (TBM) is a softly-broken hidden or an accidental symmetry, we adopt a model-independent analysis in which we perturb a neutrino mass matrix leading to TBM in the most general way but leave the thre e texture zeros of the diagonal charged lepton mass matrix unperturbed. We compare predictions for the perturbed neutrino TBM parameters with those obtained from typical SO(10) grand unified theories with a variety of flavor symmetries. Whereas SO(10) GUTs almost always predict a normal mass hierarchy for the light neutrinos, TBM has a priori no preference for neutrino masses. We find, in particular for the latter, that the value of |U_{e3}| is very sensitive to the neutrino mass scale and ordering. Observation of |U_{e3}|^2 > 0.001 to 0.01 within the next few years would be incompatible with softly-broken TBM and a normal mass hierarchy and would suggest that the apparent TBM symmetry is an accidental symmetry instead. No such conclusions can be drawn for the inverted and quasi-degenerate hierarchy spectra.
154 - Werner Rodejohann 2008
The see-saw mechanism to generate small neutrino masses is reviewed. After summarizing our current knowledge about the low energy neutrino mass matrix we consider reconstructing the see-saw mechanism. Low energy neutrino physics is not sufficient to reconstruct see-saw, a feature which we refer to as ``see-saw degeneracy. Indirect tests of see-saw are leptogenesis and lepton flavor violation in supersymmetric scenarios, which together with neutrino mass and mixing define the framework of see-saw phenomenology. Several examples are given, both phenomenological and GUT-related. Variants of the see-saw mechanism like the type II or triplet see-saw are also discussed. In particular, we compare many general aspects regarding the dependence of LFV on low energy neutrino parameters in the extreme cases of a dominating conventional see-saw term or a dominating triplet term. For instance, the absence of mu -> e gamma or tau -> e gamma in the pure triplet case means that CP is conserved in neutrino oscillations. Scanning models, we also find that among the decays mu -> e gamma, tau -> e gamma and tau -> mu gamma the latter one has the largest branching ratio in (i) SO(10) type I see-saw models and in (ii) scenarios in which the triplet term dominates in the neutrino mass matrix.
Among all neutrino mixing parameters, the atmospheric neutrino mixing angle theta_{23} introduces the strongest variation on the flux ratios of ultra high energy neutrinos. We investigate the potential of these flux ratio measurements at neutrino tel escopes to constrain theta_{23}. We consider astrophysical neutrinos originating from pion, muon-damped and neutron sources and make a comparative study of their sensitivity reach to theta_{23}. It is found that neutron sources are most favorable for testing deviations from maximal theta_{23}. Using a chi^2 analysis, we show in particular the power of combining (i) different flux ratios from the same type of source, and also (ii) combining flux ratios from different astrophysical sources. We include in our analysis ``impure sources, i.e., deviations from the usually assumed initial (1 : 2 : 0), (0 : 1 : 0) or (1 : 0 : 0) flux compositions.
We discuss flavor-mixing probabilities and flavor ratios of high energy astrophysical neutrinos. In the first part of this paper, we expand the neutrino flavor-fluxes in terms of the small parameters U_{e3} and pi/4 - theta_{23}, and show that there are universal first and second order corrections. The second order term can exceed the first order term, and so should be included in any analytic study. We also investigate the probabilities and ratios after a further expansion around the tribimaximal value of sin^2 theta_{12} = 1/3. In the second part of the paper, we discuss implications of deviations of initial flavor ratios from the usually assumed, idealized flavor compositions for pion, muon-damped, and neutron beam sources, viz., (1 : 2 : 0), (0 : 1 : 0), and (1 : 0 : 0), respectively. We show that even small deviations have significant consequences for the observed flavor ratios at Earth. If initial flavor deviations are not taken into account in analyses, then false inferences for the values in the PMNS matrix elements (angles and phase) may result.
We consider corrections to vanishing U_{e3} and maximal atmospheric neutrino mixing originating from the relation U = U_ell^dagger U_nu, where U is the PMNS mixing matrix and U_ell (U_nu) is associated with the diagonalization of the charged lepton ( neutrino) mass matrix. We assume that in the limit of U_ell or U_nu being the unit matrix, one has U_{e3} = 0 and theta_{23} = pi/4, while the solar neutrino mixing angle is a free parameter. Well-known special cases of the indicated scenario are the bimaximal and tri-bimaximal mixing schemes. If U_{e3} eq 0 and theta_{23} eq pi/4 due to corrections from the charged leptons, |U_{e3}| can be sizable (close to the existing upper limit) and we find that the value of the solar neutrino mixing angle is linked to the magnitude of CP violation in neutrino oscillations. In the alternative case of the neutrino sector correcting U_{e3} = 0 and theta_{23} = pi/4, we obtain a generically smaller |U_{e3}| than in the first case. Now the magnitude of CP violation in neutrino oscillations is connected to the value of the atmospheric neutrino mixing angle theta_{23}. We find that both cases are in agreement with present observations. We also introduce parametrization independent sum-rules for the oscillation parameters.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا