ﻻ يوجد ملخص باللغة العربية
Advantages of the original symmetrical form of the parametrization of the lepton mixing matrix are discussed. It provides a conceptually more transparent description of neutrino oscillations and lepton number violating processes like neutrinoless double beta decay, clarifying the significance of Dirac and Majorana phases. It is also ideal for parametrizing scenarios with light sterile neutrinos.
We study an energy-scale dependence of the lepton-flavor-mixing matrix in the minimal supersymmetric standard model with the effective dimension-five operators which give the masses of neutrinos. We analyze the renormalization group equations of kapp
Inspired by a new relation $theta_{13}^{rm PMNS}={theta_C}/{sqrt{2}}$ observed from the relatively large $theta_{13}^{rm PMNS}$, we find that the combination of this relation with the quark-lepton complementarity and the self-complementarity results
Starting from a new zeroth order basis for quark mixing (CKM) matrix based on the quark-lepton complementarity and the tri-bimaximal pattern of lepton mixing, we derive a triminimal parametrization of CKM matrix with three small angles and a CP-viola
We propose a new parametrization for the quark and lepton mixing matrices: the two 12-mixing angles (the Cabibbo angle and the angle responsible for solar neutrino oscillations) are at zeroth order pi/12 and pi/5, respectively. The resulting 12-eleme
We have used the SmallGroups library of groups, together with the computer algebra systems GAP and Mathematica, to search for groups with a three-dimensional irreducible representation in which one of the group generators has a twice-degenerate eigen