ترغب بنشر مسار تعليمي؟ اضغط هنا

Using molecular dynamics simulations, we investigate systematically the water permeation properties across the single-walled carbon nanotube (SWCNT) in the presence of the terahertz electric field (TEF). With the TEF normal to the nanotube, the fract ure of the hydrogen bonds results in the giant peak of net fluxes across the SWCNT with a three-fold enhancement centered around 14THz. The phenomenon is attributed to the resonant mechanisms, characterized by librational, rotational, and rotation-induced responses of in-tube polar water molecules to the TEF. For the TEF along the symmetry axis of the nanotube, the vortical modes for resonances and consequently the enhancement of net fluxes are greatly suppressed by the alignment of polar water along the symmetry axis, which characterizes the quasi one-dimensional feature of the SWCNT nicely. The resonances of water molecules in the TEF can have potential applications in the high-flux device designs used for various purposes.
102 - Wei Zhou , Yue Sun , Shuo Zhang 2014
Experimental evidences from transport, magnetic, and magneto-optical (MO) image measurements confirmed that arsenic (As) vapor annealing was another effective way to induce bulk superconductivity with isotropic, large, and homogenous superconducting critical current density (Jc) in Fe1+yTe0.6Se0.4 single crystal. Since As is an exotic and easily detectable heavy element to Fe1+yTe0.6Se0.4 single crystal, As vapor annealing is very advantageous for the study of annealing mechanism. Detailed micro-structural and elemental analyses exclude the possibility that intercalating or doping effect may happen in the other post-annealing methods, proving that Fe reacts with As on the surface of the crystal and the reaction itself acts as a driving force to drag excess Fe out. The removal of excess Fe results in the good superconductivity performance.
86 - W. Zhou , X. Li , X. Zhou 2014
High-quality superconducting KxFeySe2 single crystals were synthesized using an easy one-step method. Detailed annealing studies were performed to make clear the phase formation process in KxFeySe2. Compatible observations were found in temperature-d ependent X-ray diffraction patterns, back-scattered electron images and corresponding electromagnetic properties, which proved that good superconductivity performance was close related to the microstructure of superconducting component. Analysis based on the scaling behavior of flux pinning force indicated that the dominant pinning mechanism was delta(Tc) pinning and independent of connectivity. The annealing dynamics studies were also performed, which manifested that the humps in temperature-dependent resistance (RT) curves were induced by competition between the metallic/superconducting and the semiconducting/insulating phases.
Superconductivity of Ca1-xLaxFe2As2 single crystals with various doping level were investigated via electromagnetic measurements for out-plane (H//c) and in-plane (H//ab) directions. Obvious double superconducting transitions, which can survive in ma gnetic fields up to several Tesla, were observed in the medium-doped (x = 0.13) sample. Two kinds of distinct Hc2 phase diagrams were established for the low superconducting phase with Tc lower than 15 K and the high superconducting phase with Tc of over 40 K, respectively. Both the two kinds of phase diagrams exist in the medium-doped sample. Unusual upward curvature near Tc was observed in Hc2 phase diagrams and analyzed in detail. Temperature dependences of anisotropy for different doping concentrations were obtained and compared. Both superconducting phases manifest extremely large anisotropies, which may originate from the interface or intercalation superconductivity.
By assuming that only gravitation exists between dark matter (DM) and normal matter (NM), we study the effects of fermionic DM on the properties of neutron stars using the two-fluid Tolman-Oppenheimer-Volkoff formalism. It is found that the mass-radi us relationship of the DM admixed neutron stars (DANSs) depends sensitively on the mass of DM candidates, the amount of DM, and interactions among DM candidates. The existence of DM in DANSs results in a spread of mass-radius relationships that cannot be interpreted with a unique equilibrium sequence. In some cases, the DM distribution can surpass the NM distribution to form DM halo. In particular, it is favorable to form an explicit DM halo, provided the repulsion of DM exists. It is interesting to find that the difference in particle number density distributions in DANSs and consequently in star radii caused by various density dependencies of nuclear symmetry energy tends to disappear as long as the repulsion of accumulated DM is sufficient. These phenomena indicate that the admixture of DM in neutron stars can significantly affect the astrophysical extraction of nuclear equation of state by virtue of neutron star measurements. In addition, the effect of the DM admixture on the star maximum mass is also investigated.
We study the trend of the nuclear symmetry energy in relativistic mean-field models with appearance of the hyperon and quark degrees of freedom at high densities. On the pure hadron level, we focus on the role of $Lambda$ hyperons in influencing the symmetry energy both at given fractions and at charge and chemical equilibriums. The softening of the nuclear symmetry energy is observed with the inclusion of the $Lambda$ hyperons that suppresses the nucleon fraction. In the phase with the admixture of quarks and hadrons, the equation of state is established on the Gibbs conditions. With the increase of the quark volume fraction in denser and denser matter, the apparent nuclear symmetry energy decreases till to disappear. This softening would have associations with the observations which need detailed discriminations in dense matter with the admixture of new degrees of freedom created by heavy-ion collisions.
The liquid-gas phase transition in hot asymmetric nuclear matter is studied within density-dependent relativistic mean-field models where the density dependence is introduced according to the Brown-Rho scaling and constrained by available data at low densities and empirical properties of nuclear matter. The critical temperature of the liquid-gas phase transition is obtained to be 15.7 MeV in symmetric nuclear matter falling on the lower edge of the small experimental error bars. In hot asymmetric matter, the boundary of the phase-coexistence region is found to be sensitive to the density dependence of the symmetry energy. The critical pressure and the area of phase-coexistence region increases clearly with the softening of the symmetry energy. The critical temperature of hot asymmetric matter separating the gas phase from the LG coexistence phase is found to be higher for the softer symmetry energy.
The relationship between deexcitation energies of superdeformed secondary minima relative to ground states and the density dependence of the symmetry energy is investigated for heavy nuclei using the relativistic mean field (RMF) model. It is shown t hat the deexcitation energies of superdeformed secondary minima are sensitive to differences in the symmetry energy that are mimicked by the isoscalar-isovector coupling included in the model. With deliberate investigations on a few Hg isotopes that have data of deexcitation energies, we find that the description for the deexcitation energies can be improved due to the softening of the symmetry energy. Further, we have investigated deexcitation energies of odd-odd heavy nuclei that are nearly independent of pairing correlations, and have discussed the possible extraction of the constraint on the density dependence of the symmetry energy with the measurement of deexcitation energies of these nuclei.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا