ترغب بنشر مسار تعليمي؟ اضغط هنا

We study systems of linear and semilinear mappings considering them as representations of a directed graph $G$ with full and dashed arrows: a representation of $G$ is given by assigning to each vertex a complex vector space, to each full arrow a line ar mapping, and to each dashed arrow a semilinear mapping of the corresponding vector spaces. We extend to such representations the classical theorems by Gabriel about quivers of finite type and by Nazarova, Donovan, and Freislich about quivers of tame types.
L.Huang [Linear Algebra Appl. 331 (2001) 21-30] gave a canonical form of a quaternion matrix $A$ with respect to consimilarity transformations $tilde{S}^{-1}AS$ in which $S$ is a nonsingular quaternion matrix and $tilde{h}:=a-bi+cj-dk$ for each quate rnion $h=a+bi+cj+dk$. We give an analogous canonical form of a quaternion matrix with respect to consimilarity transformations $hat{S}^{-1}AS$ in which $hmapstohat{h}$ is an arbitrary involutive automorphism of the skew field of quaternions. We apply the obtained canonical form to the quaternion matrix equations $AX-hat{X}B=C$ and $X-Ahat{X}B=C$.
We give a method for constructing a regularizing decomposition of a matrix pencil, which is formulated in terms of the linear mappings. We prove that two pencils are topologically equivalent if and only if their regularizing decompositions coincide u p to permutation of summands and their regular parts coincide up to homeomorphisms of their spaces.
We consider the problem of classifying oriented cycles of linear mappings $F^pto F^qtodotsto F^rto F^p$ over a field $F$ of complex or real numbers up to homeomorphisms in the spaces $F^p,F^q,dots,F^r$. We reduce it to the problem of classifying line ar operators $F^nto F^n$ up to homeomorphism in $F^n$, which was studied by N.H. Kuiper and J.W. Robbin [Invent. Math. 19 (2) (1973) 83-106] and by other authors.
This is a survey article for Handbook of Linear Algebra, 2nd ed., Chapman & Hall/CRC, 2014. An informal introduction to representations of quivers and finite dimensional algebras from a linear algebraists point of view is given. The notion of quiver representations is extended to representations of mixed graphs, which permits one to study systems of linear mappings and bilinear or sesquilinear forms. The problem of classifying such systems is reduced to the problem of classifying systems of linear mappings.
The reductions of a square complex matrix A to its canonical forms under transformations of similarity, congruence, or *congruence are unstable operations: these canonical forms and reduction transformations depend discontinuously on the entries of A . We survey results about their behavior under perturbations of A and about normal forms of all matrices A+E in a neighborhood of A with respect to similarity, congruence, or *congruence. These normal forms are called miniversal deformations of A; they are not uniquely determined by A+E, but they are simple and depend continuously on the entries of E.
V.I. Arnold [Russian Math. Surveys, 26 (no. 2), 1971, pp. 29-43] gave a miniversal deformation of matrices of linear operators; that is, a simple canonical form, to which not only a given square matrix A, but also the family of all matrices close to A, can be reduced by similarity transformations smoothly depending on the entries of matrices. We study miniversal deformations of quiver representations and obtain a miniversal deformation of matrices of chains of linear mappings.
We consider a family of pairs of m-by-p and m-by-q matrices, in which some entries are required to be zero and the others are arbitrary, with respect to transformations (A,B)--> (SAR,SBL) with nonsingular S, R, L. We prove that almost all of these pa irs reduce to the same pair (C, D) from this family, except for pairs whose arbitrary entries are zeros of a certain polynomial. The polynomial and the pair (C D) are constructed by a combinatorial method based on properties of a certain graph.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا