ترغب بنشر مسار تعليمي؟ اضغط هنا

We report electrical conductivity $sigma$ measurements on a range of two-dimensional electron gases (2DEGs) of varying linear extent. Intriguingly, at low temperatures ($T$) and low carrier density ($n_{mathrm{s}}$) we find the behavior to be consist ent with $sigma sim L^{alpha}$, where $L$ is the length of the 2DEG along the direction of transport. Importantly, such scale-dependent behavior is precisely in accordance with the scaling hypothesis of localization~[Abrahams~textit{et al.}, Phys. Rev. Lett. textbf{42}, 673 (1979)] which dictates that in systems where the electronic wave function $xi$ is localized, $sigma$ is not a material-specific parameter, but depends on the system dimensions. From our data we are able to construct the $beta$-function $equiv (h/e^2) d ln sigma / d ln L$ and show this to be strongly consistent with theoretically predicted limiting values. These results suggest, remarkably, that the electrons in the studied 2DEGs preserve phase coherence over lengths $sim~10~mu$m. This suggests the utility of the 2DEGs studied towards applications in quantum information as well as towards fundamental investigations into many-body localized phases.
We present measurements of the energy relaxation length scale $ell$ in two-dimensional electron gases (2DEGs). A temperature gradient is established in the 2DEG by means of a heating current, and then the elevated electron temperature $T_e$ is estima ted by measuring the resultant thermovoltage signal across a pair of deferentially biased bar-gates. We adapt a model by Rojek and K{o}nig [Phys. Rev. B textbf{90}, 115403 (2014)] to analyse the thermovoltage signal and as a result extract $ell$, $T_e$, and the power-law exponent $alpha_i$ for inelastic scattering events in the 2DEG. We show that in high-mobility 2DEGs, $ell$ can attain macroscopic values of several hundred microns, but decreases rapidly as the carrier density $n$ is decreased. Our work demonstrates a versatile low-temperature thermometry scheme, and the results provide important insights into heat transport mechanisms in low-dimensional systems and nanostructures. These insights will be vital for practical design considerations of future nanoelectronic circuits.
We present thermopower $S$ and resistance $R$ measurements on GaAs-based mesoscopic two-dimensional electron gases (2DEGs) as functions of the electron density $n_s$. At high $n_s$ we observe good agreement between the measured $S$ and $S_{rm{MOTT}}$ , the Mott prediction for a non-interacting metal. As $n_s$ is lowered, we observe a crossover from Mott-like behaviour to that where $S$ shows strong oscillations and even sign changes. Remarkably, there are absolutely no features in $R$ corresponding to those in $S$. In fact, $R$ is devoid of even any universal conductance fluctuations. A statistical analysis of the thermopower oscillations from two devices of dissimilar dimensions suggest a universal nature of the oscillations. We critically examine whether they can be mesoscopic fluctuations of the kind described by Lesovik and Khmelnitskii in Sov. Phys. JETP. textbf{67}, 957 (1988).
We report thermopower ($S$) and electrical resistivity ($rho_{2DES}$) measurements in low-density (10$^{14}$ m$^{-2}$), mesoscopic two-dimensional electron systems (2DESs) in GaAs/AlGaAs heterostructures at sub-Kelvin temperatures. We observe at temp eratures $lesssim$ 0.7 K a linearly growing $S$ as a function of temperature indicating metal-like behaviour. Interestingly this metallicity is not Drude-like, showing several unusual characteristics: i) the magnitude of $S$ exceeds the Mott prediction valid for non-interacting metallic 2DESs at similar carrier densities by over two orders of magnitude; and ii) $rho_{2DES}$ in this regime is two orders of magnitude greater than the quantum of resistance $h/e^2$ and shows very little temperature-dependence. We provide evidence suggesting that these observations arise due to the formation of novel quasiparticles in the 2DES that are not electron-like. Finally, $rho_{2DES}$ and $S$ show an intriguing decoupling in their density-dependence, the latter showing striking oscillations and even sign changes that are completely absent in the resistivity.
We present thermal and electrical transport measurements of low-density (10$^{14}$ m$^{-2}$), mesoscopic two-dimensional electron systems (2DESs) in GaAs/AlGaAs heterostructures at sub-Kelvin temperatures. We find that even in the supposedly strongly localised regime, where the electrical resistivity of the system is two orders of magnitude greater than the quantum of resistance $h/e^2$, the thermopower decreases linearly with temperature indicating metallicity. Remarkably, the magnitude of the thermopower exceeds the predicted value in non-interacting metallic 2DESs at similar carrier densities by over two orders of magnitude. Our results indicate a new quantum state and possibly a novel class of itinerant quasiparticles in dilute 2DESs at low temperatures where the Coulomb interaction plays a pivotal role.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا