ترغب بنشر مسار تعليمي؟ اضغط هنا

71 - V. Hill , A. Lecureur , A. Gomez 2011
We seek to constrain the formation of the Galactic bulge by means of analysing the detailed chemical composition of a large sample of red clump stars in Baades window. We measure [Fe/H] in a sample of 219 bulge red clump stars from R=20000 resolution spectra obtained with FLAMES/GIRAFFE at the VLT, using an automatic procedure, differentially to the metal-rich local reference star muLeo. For a subsample of 162 stars, we also derive [Mg/H] from spectral synthesis around the MgI triplet at 6319A. The Fe and Mg metallicity distributions are both asymmetric, with median values of +0.16 and +0.21 respectively. The iron distribution is clearly bimodal, as revealed both by a deconvolution (from observational errors) and a Gaussian decomposition. The decomposition of the observed Fe and Mg metallicity distributions into Gaussian components yields two populations of equal sizes (50% each): a metal-poor component centred around [Fe/H]=-0.30 and [Mg/H]=-0.06 with a large dispersion and a narrow metal-rich component centred around [Fe/H]=+0.32 and [Mg/H]=+0.35. The metal poor component shows high [Mg/Fe] ratios (around 0.3) whereas stars in the metal rich component are found to have near solar ratios. Babusiaux et al. (2010) also find kinematical differences between the two components: the metal poor component shows kinematics compatible with an old spheroid whereas the metal rich component is consistent with a population supporting a bar. In view of their chemical and kinematical properties, we suggest different formation scenarios for the two populations: a rapid formation timescale as an old spheroid for the metal poor component (old bulge) and for the metal rich component, a formation over a longer time scale driven by the evolution of the bar (pseudo-bulge).
62 - B. Letarte , V. Hill , E. Tolstoy 2010
For the first time we show the detailed late-stage chemical evolution history of small nearby dwarf spheroidal galaxy in the Local Group. We present the results of a high resolution (R$sim$20000) FLAMES/GIRAFFE abundance study at ESO/VLT of 81 photom etrically selected red giant branch stars in the central 25$$ of the Fornax dwarf spheroidal galaxy. We present abundances of alfe (Mg, Si, Ca and Ti), iron-peak elements (Fe, Ni and Cr) and heavy elements (Y, Ba, La, Nd and Eu). Our sample was randomly selected, and is clearly dominated by the younger and more metal rich component of Fornax which represents the major fraction of stars in the central region. This means that the majority of our stars are 1$-$4 Gyr old, and thus represent the end phase of chemical evolution in this system. Our sample of stars has unusually low [$alpha$/Fe], [Ni/Fe] and [Na/Fe] compared to the Milky Way stellar populations at the same [Fe/H]. The particularly important role of stellar winds from low metallicity AGB stars in the creation of s-process elements is clearly seen from the high [Ba/Y]. Furthermore, we present evidence for an s-process contribution to Eu.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا