ﻻ يوجد ملخص باللغة العربية
For the first time we show the detailed late-stage chemical evolution history of small nearby dwarf spheroidal galaxy in the Local Group. We present the results of a high resolution (R$sim$20000) FLAMES/GIRAFFE abundance study at ESO/VLT of 81 photometrically selected red giant branch stars in the central 25$$ of the Fornax dwarf spheroidal galaxy. We present abundances of alfe (Mg, Si, Ca and Ti), iron-peak elements (Fe, Ni and Cr) and heavy elements (Y, Ba, La, Nd and Eu). Our sample was randomly selected, and is clearly dominated by the younger and more metal rich component of Fornax which represents the major fraction of stars in the central region. This means that the majority of our stars are 1$-$4 Gyr old, and thus represent the end phase of chemical evolution in this system. Our sample of stars has unusually low [$alpha$/Fe], [Ni/Fe] and [Na/Fe] compared to the Milky Way stellar populations at the same [Fe/H]. The particularly important role of stellar winds from low metallicity AGB stars in the creation of s-process elements is clearly seen from the high [Ba/Y]. Furthermore, we present evidence for an s-process contribution to Eu.
Fornax is one of the most massive dwarf spheroidal galaxies in the Local Group. The Fornax field star population is dominated by intermediate age stars but star formation was going on over almost its entire history. It has been proposed that Fornax e
The ages of individual Red Giant Branch stars (RGB) can range from 1 Gyr old to the age of the Universe, and it is believed that the abundances of most chemical elements in their photospheres remain unchanged with time (those that are not affected by
We report on a multi-epoch study of the Fornax dwarf spheroidal galaxy, made with the Infrared Survey Facility, over an area of about 42x42. The colour-magnitude diagram shows a broad well-populated giant branch with a tip that slopes down-wards from
Since first noticed by Shapley in 1939, a faint object coincident with the Fornax dwarf spheroidal has long been discussed as a possible sixth globular cluster system. However, debate has continued over whether this overdensity is a statistical artif
The Fornax dwarf spheroidal galaxy has an anomalous number of globular clusters, five, for its stellar mass. There is a longstanding debate about a potential sixth globular cluster (Fornax~6) that has recently been `rediscovered in DECam imaging. We