ترغب بنشر مسار تعليمي؟ اضغط هنا

The aim of this short note is to present an option for a source of ultracold neutrons (UCNs), which could profit from the pulse time-structure of the future ESS spallation neutron source in Lund, and thus which could produce a very high UCN density a nd a rather high UCN flux simultaneously. In order to realize this idea one has to install a relatively thin solid-deuterium UCN source in a close vicinity to the spallation target and to couple it with an extraction UCN guide with an entrance membrane window, which is moving periodically and synchronously with the operation cycle of the spallation source, as explained in the text below. This proposal profits from the fact that all characteristic parameters of the problem, such as the pulse duration of the ESS spallation source, the typical thickness of solid deuterium source that could be easily realized, the typical time of generation of UCNs in solid deuterium, the length and diameter of the extraction neutron guide and the time diagram of the membrane motion that is still realistic, they all fit nicely to optimum desired parameters. The UCN density produced in such a way could approach 10^6 UCN/cm3.
Analyzing new experiments with ultracold neutrons (UCNs) we show that physical adsorption of nanoparticles/nano-droplets, levitating in high-excited states in a deep and broad potential well formed by van der Waals/Casimir-Polder (vdW/CP) forces resu lts in new effects on a cross-road of fundamental interactions, neutron, surface and nanoparticle physics. Accounting for the interaction of UCNs with nanoparticles explains a recently discovered intriguing small heating of UCNs in traps. It might be relevant to the striking conflict of the neutron lifetime experiments with smallest reported uncertainties by adding false effects there.
Physical adsorption of atoms, molecules and clusters on surface is known. It is linked to many phenomena in physics, chemistry, and biology. Usually the studies of adsorption are limited to the particle sizes of up to ~10^2-10^3 atoms. Following a ge neral formalism, we apply it to even larger objects and discover qualitatively new phenomena. A large particle is bound to surface in a deep and broad potential well formed by van der Waals/ Casimir-Polder forces. The well depth is significantly larger than the characteristic thermal energy. Nanoparticles in high-excited bound states form two-dimensional gas of objects quasi-freely traveling along surface. A particularly interesting prediction is small-energy-transfer scattering of UCN on solid/ liquid surfaces covered by such levitating nanoparticles/ nano-droplets. The change in UCN energy is due to the Doppler shift induced by UCN collisions with nanoparticles; the energy change is about as small as the UCN initial energy. We compare theoretical estimations of our model to all relevant existing data and state that they agree quite well. As our theoretical formalism provides robust predictions and the experimental data are rather precise, we conclude that the recently discovered intriguing phenomenon of small heating of UCN in traps is due to their collisions with such levitating nanoparticles. Moreover, this new phenomenon might be relevant to the striking contradiction between results of the neutron lifetime measurements with smallest reported uncertainties as it might cause major false effects in these experiments; thus it affects fundamental conclusions concerning precision checks of unitarity of the Cabibbo-Kobayashi-Maskawa matrix, cosmology, astrophysics. Dedicated measurements of UCN up-scattering on specially prepared surfaces and nanoparticles levitating above them might provide a unique method to study surface potentials.
We predicted and observed for the first time the quasi-specular albedo of cold neutrons at small incidence angles from a powder of nanoparticles. This albedo (reflection) is due to multiple neutron small-angle scattering. The reflection angle as well as the half-width of angular distribution of reflected neutrons is approximately equal to the incidence angle. The measured reflection probability was equal to ~30% within the detector angular size that corresponds to 40-50% total calculated probability of quasi-specular reflection.
We present a method to measure the resonance transitions between the gravitationally bound quantum states of neutrons in the GRANIT spectrometer. The purpose of GRANIT is to improve the accuracy of measurement of the quantum states parameters by seve ral orders of magnitude, taking advantage of long storage of Ultracold neutrons at specula trajectories. The transitions could be excited using a periodic spatial variation of a magnetic field gradient. If the frequency of such a perturbation (in the frame of a moving neutron) coincides with a resonance frequency defined by the energy difference of two quantum states, the transition probability will sharply increase. The GRANIT experiment is motivated by searches for short-range interactions (in particular spin-dependent interactions), by studying the interaction of a quantum system with a gravitational field, by searches for extensions of the Standard model, by the unique possibility to check the equivalence principle for an object in a quantum state and by studying various quantum optics phenomena.
We study possibility of efficient reflection of very cold neutrons (VCN) from powders of nanoparticles. In particular, we measured the scattering of VCN at a powder of diamond nanoparticles as a function of powder sample thickness, neutron velocity a nd scattering angle. We observed extremely intense scattering of VCN even off thin powder samples. This agrees qualitatively with the model of independent nanoparticles at rest. We show that this intense scattering would allow us to use nanoparticle powders very efficiently as the very first reflectors for neutrons with energies within a complete VCN range up to $10^{-4}$ eV.
The available data on neutron scattering were analyzed to constrain a hypothetical new short-range interaction. We show that these constraints are several orders of magnitude better than those usually cited in the range between 1 pm and 5 nm. This di stance range occupies an intermediate space between collider searches for strongly coupled heavy bosons and searches for new weak macroscopic forces. We emphasise the reliability of the neutron constraints in so far as they provide several independent strategies. We have identified the most promising way to improve them.
We describe measurements of the parity-violating (P-odd) triton emission asymmetry coefficient in the 6Li(n,alfa)3H reaction with polarised cold neutrons. Experiments were carried out at the Petersburg Nuclear Physics Institute (Gatchina, Russia) and at the Institut Laue-Langevin (Grenoble, France). We employed an ionisation chamber in a configuration allowing us to suppress the left-right asymmetry well below 10^(-8). A test for a false asymmetry due to eventual target impurities (zero test) resulted in the value (0.0+-0.5)x10^(-8). As final result we obtained P-odd effect (-8.6+-2.0)x10^(-8).
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا