ترغب بنشر مسار تعليمي؟ اضغط هنا

Measurement of the parity-violating triton emission asymmetry in the reaction 6Li(n,alfa)3H with polarised cold neutrons

57   0   0.0 ( 0 )
 نشر من قبل Valery Nesvizhevsky
 تاريخ النشر 2007
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe measurements of the parity-violating (P-odd) triton emission asymmetry coefficient in the 6Li(n,alfa)3H reaction with polarised cold neutrons. Experiments were carried out at the Petersburg Nuclear Physics Institute (Gatchina, Russia) and at the Institut Laue-Langevin (Grenoble, France). We employed an ionisation chamber in a configuration allowing us to suppress the left-right asymmetry well below 10^(-8). A test for a false asymmetry due to eventual target impurities (zero test) resulted in the value (0.0+-0.5)x10^(-8). As final result we obtained P-odd effect (-8.6+-2.0)x10^(-8).

قيم البحث

اقرأ أيضاً

We report the first precision measurement of the parity-violating asymmetry in the direction of proton emission with respect to the neutron spin, in the reaction $^{3}mathrm{He}(mathrm{n},mathrm{p})^{3}mathrm{H}$, using the capture of polarized cold neutrons in an unpolarized active $^3rm{He}$ target. The asymmetry is a result of the weak interaction between nucleons, which remains one of the most poorly understood aspects of electro-weak theory. The measurement provides an important benchmark for modern effective field theory (EFT) calculations. Measurements like this are necessary to determine the spin-isospin structure of the hadronic weak interaction. Our asymmetry result is $A_{PV} = left( 1.58 pm 0.97 ~mathrm{(stat)} pm 0.24~mathrm{(sys)}right)times10^{-8}$, which has the smallest uncertainty of any parity-violating asymmetry measurement so far.
We outline the motivation and conceptual design for a new experiment aimed at a 10-fold improvement in the accuracy of the parity-violating asymmetry A_gamma in the angular distribution of 2.2 MeV gamma rays from the n+p-->d+gamma reaction. This obse rvable is primarily sensitive to the weak pion-nucleon coupling H_pi^1. A proof-of-principle experiment using unpolarized low-energy neutron capture on polyethylene and an array of 12 CsI detectors operated in current mode has been performed. Results of this test experiment including the current mode signal, electronic noise and detector sensitivity to magnetic fields are reported.
144 - D. Wang , K. Pan , R. Subedi 2014
The parity-violating asymmetries between a longitudinally-polarized electron beam and an unpolarized deuterium target have been measured recently. The measurement covered two kinematic points in the deep inelastic scattering region and five in the nu cleon resonance region. We provide here details of the experimental setup, data analysis, and results on all asymmetry measurements including parity-violating electron asymmetries and those of inclusive pion production and beam-normal asymmetries. The parity-violating deep-inelastic asymmetries were used to extract the electron-quark weak effective couplings, and the resonance asymmetries provided the first evidence for quark-hadron duality in electroweak observables. These electron asymmetries and their interpretation were published earlier, but are presented here in more detail.
349 - D. Wang , K. Pan , R. Subedi 2013
We report on parity-violating asymmetries in the nucleon resonance region measured using $5 - 6$ GeV longitudinally polarized electrons scattering off an unpolarized deuterium target. These results are the first parity-violating asymmetry data in the resonance region beyond the $Delta(1232)$, and provide a verification of quark-hadron duality in the nucleon electroweak $gamma Z$ interference structure functions at the (10-15)% level. The results are of particular interest to models relevant for calculating the $gamma Z$ box-diagram corrections to elastic parity-violating electron scattering measurements.
The parity-violating (PV) asymmetry of inclusive $pi^-$ production in electron scattering from a liquid deuterium target was measured at backward angles. The measurement was conducted as a part of the G0 experiment, at a beam energy of 360 MeV. The p hysics process dominating pion production for these kinematics is quasi-free photoproduction off the neutron via the $Delta^0$ resonance. In the context of heavy-baryon chiral perturbation theory (HB$chi$PT), this asymmetry is related to a low energy constant $d_Delta^-$ that characterizes the parity-violating $gamma$N$Delta$ coupling. Zhu et al. calculated $d_Delta^-$ in a model benchmarked by the large asymmetries seen in hyperon weak radiative decays, and predicted potentially large asymmetries for this process, ranging from $A_gamma^-=-5.2$ to $+5.2$ ppm. The measurement performed in this work leads to $A_gamma^-=-0.36pm 1.06pm 0.37pm 0.03$ ppm (where sources of statistical, systematic and theoretical uncertainties are included), which would disfavor enchancements considered by Zhu et al. proportional to $V_{ud}/V_{us}$. The measurement is part of a program of inelastic scattering measurements that were conducted by the G0 experiment, seeking to determine the $N-Delta$ axial transition form-factors using PV electron scattering.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا