ترغب بنشر مسار تعليمي؟ اضغط هنا

Resonant Bragg diffraction of soft, circularly polarized x-rays has been used to observe directly the temperature dependence of chiral-order melting in a motif of Mn ions in terbium manganate. The underlying mechanism uses the b-axis component of a c ycloid, which vanishes outside the polar phase. Melting is witnessed by the first and second harmonics of a cycloid, and we explain why the observed temperature dependence is different in the two harmonics. Our direct observation of melting is supported by a solid foundation of evidence, derived from extensive studies of the azimuthal-angle dependence of intensities with both linear and circular polarization.
We have used soft x-ray magnetic diffraction at the Fe3+ L2,3 edges to examine to what extent the Dzyaloshinsky-Moriya interaction in Ba3NbFe3Si2O14 influences its low temperature magnetic structure. A modulated component of the moments along the c-a xis is present, adding to the previously proposed helical magnetic configuration of co-planar moments in the a,b-plane. This leads to a helical-butterfly structure and suggests that both the multi-axial in-plane and the uniform out-of-plane Dzyaloshinsky-Moriya vectors are relevant. A non zero orbital magnetic signal is also observed at the oxygen K edge, which reflects the surprisingly strong hybridization between iron 3d and oxygen 2p states, given the nominal spherical symmetry of the Fe3+ half filled shell.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا