ترغب بنشر مسار تعليمي؟ اضغط هنا

Melting of chiral order in terbium manganate (TbMnO3) observed with resonant x-ray Bragg diffraction

349   0   0.0 ( 0 )
 نشر من قبل Valerio Scagnoli
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Resonant Bragg diffraction of soft, circularly polarized x-rays has been used to observe directly the temperature dependence of chiral-order melting in a motif of Mn ions in terbium manganate. The underlying mechanism uses the b-axis component of a cycloid, which vanishes outside the polar phase. Melting is witnessed by the first and second harmonics of a cycloid, and we explain why the observed temperature dependence is different in the two harmonics. Our direct observation of melting is supported by a solid foundation of evidence, derived from extensive studies of the azimuthal-angle dependence of intensities with both linear and circular polarization.



قيم البحث

اقرأ أيضاً

Soft resonant x-ray Bragg diffraction (SRXD) at the Ho M$_{4,5}$ edges has been used to study Ho $4f$ multipoles in the combined magnetic and orbitally ordered phase of HoB$_2$C$_2$. A full description of the energy dependence for both $sigma$ and $p i$ incident x-rays at two different azimuthal angles, as well as the ratio $I_sigma/I_pi$ as a function of azimuthal angle for a selection of energies, allows a determination of the higher order multipole moments of rank 1 (dipole) to 6 (hexacontatetrapole). The Ho 4f multipole moments have been estimated, indicating a dominant hexadecapole (rank 4) order with an almost negligible influence from either the dipole or the octupole magnetic terms. The analysis incorporates both the intra-atomic magnetic and quadrupolar interactions between the 3d core and 4f valence shells as well as the interference of contributions to the scattering that behave differently under time reversal. Comparison of SRXD, neutron diffraction and non resonant x-ray diffraction shows that the magnetic and quadrupolar order parameter are distinct. The $(0 0 1/2)$ component of the magnetic order exhibits a Brillouin type increase below the orbital ordering temperature T$_Q$, while the quadrupolar order increases more sharply. We conclude the quadrupolar interaction is strong, but quadrupolar order only occurs when the magnetic order gives rise to a quasi doublet ground state, which results in a lock-in of the orbitals at T$_Q$.
Multiferroic TbMnO3 is investigated using x-ray diffraction in high magnetic fields. Measurements on first and second harmonic structural reflections due to modulations induced by the Mn and Tb magnetic order are presented as function of temperature and field oriented along the a and b-directions of the crystal. The relation to changes in ordering of the rare earth moments in applied field is discussed. Observations below T_N(Tb) without and with applied magnetic field point to a strong interaction of the rare earth order, the Mn moments and the lattice. Also, the incommensurate to commensurate transition of the wave vector at the critical fields is discussed with respect to the Tb and Mn magnetic order and a phase diagram on basis of these observations for magnetic fields H||a and H||b is presented. The observations point to a complicated and delicate magneto-elastic interaction as function of temperature and field.
We studied the stripe phase of La1.8Sr0.2NiO4 using neutron diffraction, resonant soft x-ray diffraction (RSXD) at the Ni L2,3 edges, and resonant x-ray diffraction (RXD) at the Ni K threshold. Differences in the q-space resolution of the different t echniques have to be taken into account for a proper evaluation of diffraction intensities associated with the spin and charge order superstructures. We find that in the RSXD experiment the spin and charge order peaks show the same temperature dependence. In the neutron experiment by contrast, the spin and charge signals follow quite different temperature behaviors. We infer that fluctuating magnetic order contributes considerably to the magnetic RSXD signal and we suggest that this result may open an interesting experimental approach to search for fluctuating order in other systems by comparing RSXD and neutron diffraction data.
Recent ultrafast magnetic-sensitive measurements [Phys. Rev. B 92, 184429 (2015) and Phys. Rev. B 96, 184414 (2017)] have revealed a delayed melting of the long-range cycloid spin-order in TbMnO$_3$ following photoexcitation across the fundamental Mo tt-Hubbard gap. The microscopic mechanism behind this slow transfer of energy from the photoexcited carriers to the spin degrees of freedom is still elusive and not understood. Here, we address this problem by combining spectroscopic ellipsometry, ultrafast broadband optical spectroscopy and ab initio calculations. Upon photoexcitation, we observe the emergence of a complex collective response, which is due to high-energy coherent optical phonons coupled to the out-of-equilibrium charge density. This response precedes the magnetic order melting and is interpreted as the fingerprint of the formation of anti-Jahn Teller polarons. We propose that the charge localization in a long-lived self-trapped state hinders the emission of magnons and other spin-flip mechanisms, causing the energy transfer from the charge to the spin system to be mediated by the reorganization of the lattice. Furthermore, we provide evidence for the coherent excitation of a phonon mode associated with the ferroelectric phase transition.
Resonant x-ray diffraction performed at the $rm L_{II}$ and $rm L_{III}$ absorption edges of Ru has been used to investigate the magnetic and orbital ordering in Ca$_2$RuO$_4$ single crystals. A large resonant enhancement due to electric dipole $2pto 4d$ transitions is observed at the wave-vector characteristic of antiferromagnetic ordering. Besides the previously known antiferromagnetic phase transition at $rm T_{N}=110$ K, an additional phase transition, between two paramagnetic phases, is observed around 260 K. Based on the polarization and azimuthal angle dependence of the diffraction signal, this transition can be attributed to orbital ordering of the Ru $t_{2g}$ electrons. The propagation vector of the orbital order is inconsistent with some theoretical predictions for the orbital state of Ca$_2$RuO$_4$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا