ترغب بنشر مسار تعليمي؟ اضغط هنا

We consider differential operators between sections of arbitrary powers of the determinant line bundle over a contact manifold. We extend the standard notions of the Heisenberg calculus: noncommutative symbolic calculus, the principal symbol, and the contact order to such differential operators. Our first main result is an intrinsically defined subsymbol of a differential operator, which is a differential invariant of degree one lower than that of the principal symbol. In particular, this subsymbol associates a contact vector field to an arbitrary second order linear differential operator. Our second main result is the construction of a filtration that strengthens the well-known contact order filtration of the Heisenberg calculus.
In this paper we construct a graded Lie algebra on the space of cochains on a $mathbbZ_2$-graded vector space that are skew-symmetric in the odd variables. The Lie bracket is obtained from the classical Gerstenhaber bracket by (partial) skew-symmetri zation; the coboundary operator is a skew-symmetrized version of the Hochschild differential. We show that an order-one element $m$ satisfying the zero-square condition $[m,m]=0$ defines an algebraic structure called Lie antialgebra. The cohomology (and deformation) theory of these algebras is then defined. We present two examples of non-trivial cohomology classes which are similar to the celebrated Gelfand-Fuchs and Godbillon-Vey classes.
117 - Valentin Ovsienko 2010
The main purpose of this work is to develop the basic notions of the Lie theory for commutative algebras. We introduce a class of $mathbbZ_2$-graded commutative but not associative algebras that we call ``Lie antialgebras. These algebras are closely related to Lie (super)algebras and, in some sense, link together commutative and Lie algebras. The main notions we define in this paper are: representations of Lie antialgebras, an analog of the Lie-Poisson bivector (which is not Poisson) and central extensions. We also classify simple finite-dimensional Lie antialgebras.
We consider $G$-graded commutative algebras, where $G$ is an abelian group. Starting from a remarkable example of the classical algebra of quaternions and, more generally, an arbitrary Clifford algebra, we develop a general viewpoint on the subject. We then give a recent classification result and formulate an open problem.
We study the notion of $Gamma$-graded commutative algebra for an arbitrary abelian group $Gamma$. The main examples are the Clifford algebras already treated by Albuquerque and Majid. We prove that the Clifford algebras are the only simple finite-dim ensional associative graded commutative algebras over $mathbb{R}$ or $mathbb{C}$. Our approach also leads to non-associative graded commutative algebras extending the Clifford algebras.
We show that the classical algebra of quaternions is a commutative $Z_2timesZ_2timesZ_2$-graded algebra. A similar interpretation of the algebra of octonions is impossible.
We consider the $osp(1|2)$-invariant bilinear operations on weighted densities on the supercircle $S^{1|1}$ called the supertransvectants. These operations are analogues of the famous Gordan transvectants (or Rankin-Cohen brackets). We prove that the se operations coincide with the iterated Poisson and ghost Poisson brackets on ${mathbb R}^{2|1}$ and apply this result to construct star-products involving the supertransvectants.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا