ترغب بنشر مسار تعليمي؟ اضغط هنا

Supertransvectants and symplectic geometry

266   0   0.0 ( 0 )
 نشر من قبل Valentin Ovsienko
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the $osp(1|2)$-invariant bilinear operations on weighted densities on the supercircle $S^{1|1}$ called the supertransvectants. These operations are analogues of the famous Gordan transvectants (or Rankin-Cohen brackets). We prove that these operations coincide with the iterated Poisson and ghost Poisson brackets on ${mathbb R}^{2|1}$ and apply this result to construct star-products involving the supertransvectants.



قيم البحث

اقرأ أيضاً

384 - Nima Moshayedi 2020
These are lecture notes for the course Poisson geometry and deformation quantization given by the author during the fall semester 2020 at the University of Zurich. The first chapter is an introduction to differential geometry, where we cover manifold s, tensor fields, integration on manifolds, Stokes theorem, de Rhams theorem and Frobenius theorem. The second chapter covers the most important notions of symplectic geometry such as Lagrangian submanifolds, Weinsteins tubular neighborhood theorem, Hamiltonian mechanics, moment maps and symplectic reduction. The third chapter gives an introduction to Poisson geometry where we also cover Courant structures, Dirac structures, the local splitting theorem, symplectic foliations and Poisson maps. The fourth chapter is about deformation quantization where we cover the Moyal product, $L_infty$-algebras, Kontsevichs formality theorem, Kontsevichs star product construction through graphs, the globalization approach to Kontsevichs star product and the operadic approach to formality. The fifth chapter is about the quantum field theoretic approach to Kontsevichs deformation quantization where we cover functional integral methods, the Moyal product as a path integral quantization, the Faddeev-Popov and BRST method for gauge theories, infinite-dimensional extensions, the Poisson sigma model, the construction of Kontsevichs star product through a perturbative expansion of the functional integral quantization for the Poisson sigma model for affine Poisson structures and the general construction.
An important theorem in Gaussian quantum information tells us that we can diagonalise the covariance matrix of any Gaussian state via a symplectic transformation. Whilst the diagonal form is easy to find, the process for finding the diagonalising sym plectic can be more difficult, and a common, existing method requires taking matrix powers, which can be demanding analytically. Inspired by a recently presented technique for finding the eigenvectors of a Hermitian matrix from certain submatrix eigenvalues, we derive a similar method for finding the diagonalising symplectic from certain submatrix determinants, which could prove useful in Gaussian quantum information.
245 - Lisa C. Jeffrey 2012
In this article we describe the relation between the Chern-Simons gauge theory partition function and the partition function defined using the symplectic action functional as the Lagrangian. We show that the partition functions obtained using these t wo Lagrangians agree, and we identify the semiclassical formula for the partition function defined using the symplectic action functional.
398 - Mauricio D. Garay 2007
Expository paper on the relations between perturbation theory of pseudo-differential operators, finiteness theorems and deformations of Lagrangian varieties.
147 - Lisa C. Jeffrey 2012
We compute the semiclassical formulas for the partition functions obtained using two different Lagrangians: the Chern-Simons functional and the symplectic action functional.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا