ترغب بنشر مسار تعليمي؟ اضغط هنا

100 - Urs Schreiber 2008
There are essentially two different approaches to the axiomatization of quantum field theory (QFT): algebraic QFT, going back to Haag and Kastler, and functorial QFT, going back to Atiyah and Segal. More recently, based on ideas by Baez and Dolan, th e latter is being refined to extended functorial QFT by Freed, Hopkins, Lurie and others. The first approach uses local nets of operator algebras which assign to each patch an algebra of observables, the latter uses n-functors which assign to each patch a propagator of states. In this note we present an observation about how these two axiom systems are naturally related: we demonstrate under mild assumptions that every 2-dimensional extended Minkowskian QFT 2-functor (parallel surface transport) naturally yields a local net. This is obtained by postcomposing the propagation 2-functor with an operation that mimics the passage from the Schroedinger picture to the Heisenberg picture in quantum mechanics. The argument has a straightforward generalization to general pseudo-Riemannian structure and higher dimensions.
Any group $G$ gives rise to a 2-group of inner automorphisms, $mathrm{INN}(G)$. It is an old result by Segal that the nerve of this is the universal $G$-bundle. We discuss that, similarly, for every 2-group $G_{(2)}$ there is a 3-group $mathrm{INN}(G _{(2)})$ and a slightly smaller 3-group $mathrm{INN}_0(G_{(2)})$ of inner automorphisms. We describe these for $G_{(2)}$ any strict 2-group, discuss how $mathrm{INN}_0(G_{(2)})$ can be understood as arising from the mapping cone of the identity on $G_{(2)}$ and show that its underlying 2-groupoid structure fits into a short exact sequence $G_{(2)} to mathrm{INN}_0(G_{(2)}) to Sigma G_{(2)}$. As a consequence, $mathrm{INN}_0(G_{(2)})$ encodes the properties of the universal $G_{(2)}$ 2-bundle.
We give a generalization of the notion of a Cartan-Ehresmann connection from Lie algebras to L-infinity algebras and use it to study the obstruction theory of lifts through higher String-like extensions of Lie algebras. We find (generalized) Chern-Si mons and BF-theory functionals this way and describe aspects of their parallel transport and quantization. It is known that over a D-brane the Kalb-Ramond background field of the string restricts to a 2-bundle with connection (a gerbe) which can be seen as the obstruction to lifting the PU(H)-bundle on the D-brane to a U(H)-bundle. We discuss how this phenomenon generalizes from the ordinary central extension U(1) -> U(H) -> PU(H) to higher categorical central extensions, like the String-extension BU(1) -> String(G) -> G. Here the obstruction to the lift is a 3-bundle with connection (a 2-gerbe): the Chern-Simons 3-bundle classified by the first Pontrjagin class. For G = Spin(n) this obstructs the existence of a String-structure. We discuss how to describe this obstruction problem in terms of Lie n-algebras and their corresponding categorified Cartan-Ehresmann connections. Generalizations even beyond String-extensions are then straightforward. For G = Spin(n) the next step is Fivebrane structures whose existence is obstructed by certain generalized Chern-Simons 7-bundles classified by the second Pontrjagin class.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا