ترغب بنشر مسار تعليمي؟ اضغط هنا

We define a finite size renormalization scheme for $phi^4$ theory which in the thermodynamic limit reduces to the standard scheme used in the broken phase. We use it to re-investigate the question of triviality for the four dimensional infinite bare coupling (Ising) limit. The relevant observables all rely on two-point functions and are very suitable for a precise estimation with the worm algorithm. This contribution updates an earlier publication by analysing a much larger dataset.
273 - Rainer Sommer , Ulli Wolff 2015
We review the long term project of the ALPHA collaboration to compute in QCD the running coupling constant and quark masses at high energy scales in terms of low energy hadronic quantities. The adapted techniques required to numerically carry out the required multiscale non-perturbative calculation with our special emphasis on the control of systematic errors are summarized. The complete results in the two dynamical flavor approximation are reviewed and an outlook is given on the ongoing three flavor extension of the programme with improved target precision.
We study the standard one-component $varphi^4$-theory in four dimensions. A renormalized coupling is defined in a finite size renormalization scheme which becomes the standard scheme of the broken phase for large volumes. Numerical simulations are re ported using the worm algorithm in the limit of infinite bare coupling. The cutoff dependence of the renormalized coupling closely follows the perturbative Callan Symanzik equation and the triviality scenario is hence further supported.
All-order strong coupling simulations have been used to derive precise energies of string states in the confined phase of three dimensional Z(2) lattice gauge theory. The behavior of the ground state energy is here compared with predictions of effect ive string theory. Our new data reported here are consistent with known universal terms of the long string length ($L_0$) expansion known from effective string models in the continuum limit. Our precision is however still not sufficient to disentangle non-univeral terms of order $L_0^{-7}
106 - Tomasz Korzec , Ulli Wolff 2012
We exactly rewrite the Z(2) lattice gauge theory with standard plaquette action as a random surface model equivalent to the untruncated set of its strong coupling graphs. By extending the worm approach applied to spin models we simulate such surfaces including Polyakov line defects that randomly walk over the lattice. Our Monte Carlo algorithms for the graph ensemble are reasonably efficient but not free of critical slowing down. Polyakov line correlators can be measured in this approach with small relative errors that are independent of the separation. As a first application our results are confronted with effective string theory predictions. In addition, the excess free energy due to twisted boundary conditions becomes an easily accessible observable. Our numerical experiments are in three dimensions, but the method is expected to work in any dimension.
We represent low dimensional quantum mechanical Hamiltonians by moderately sized finite matrices that reproduce the lowest O(10) boundstate energies and wave functions to machine precision. The method extends also to Hamiltonians that are neither Her mitian nor PT symmetric and thus allows to investigate whether or not the spectra in such cases are still real. Furthermore, the approach is especially useful for problems in which a position-dependent mass is adopted, for example in effective-mass models in solid-state physics or in the approximate treatment of coupled nuclear motion in molecular physics or quantum chemistry. The performance of the algorithm is demonstrated by considering the inversion motion of different isotopes of ammonia molecules within a position-dependent-mass model and some other examples of one- and two-dimensional Hamiltonians that allow for the comparison to analytical or numerical results in the literature.
Worm methods to simulate the Ising model in the Aizenman random current representation including a low noise estimator for the connected four point function are extended to allow for antiperiodic boundary conditions. In this setup several finite size renormalization schemes are formulated and studied with regard to the triviality of phi^4 theory in four dimensions. With antiperiodicity eliminating the zero momentum Fourier mode a closer agreement with perturbation theory is found compared to the periodic torus.
102 - Jurgen Rubow , Ulli Wolff 2011
We describe an explicit algorithm to factorize an even antisymmetric N^2 matrix into triangular and trivial factors. This allows for a straight forward computation of Pfaffians (including their signs) at the cost of N^3/3 flops.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا