ترغب بنشر مسار تعليمي؟ اضغط هنا

Recent investigations have shown that Fe$_{1+y}$Te$_{1-x}$Se$_{x}$ can be made superconducting by annealing it in Se and O vapors. The current lore is that these chalcogen vapors induce superconductivity by removing the magnetic excess Fe atoms. To i nvestigate this phenomenon we performed a combination of magnetic susceptibility, specific heat and transport measurements together with scanning tunneling microscopy and spectroscopy and density functional theory calculations on Fe$_{1+y}$Te$_{1-x}$Se$_{x}$ treated with Te vapor. We conclude that the main role of the Te vapor is to quench the magnetic moments of the excess Fe atoms by forming FeTe$_{m}$ (m $geq$ 1) complexes. We show that the remaining FeTe$_{m}$ complexes are still damaging to the superconductivity and therefore that their removal potentially could further improve superconductive properties in these compounds.
73 - Tom Berlijn 2014
The platinum iron arsenides Ca$_{10}$(Fe$_{1-x}$Pt$_x$As)$_{10}$(Pt$_n$As$_8$) are the first Fe based superconductors with metallic spacer layers. Furthermore they display a large variation in their critical temperatures depending on the amount of Pt in their spacer layers: $(n=3,4)$. To gain more insight into the role of the spacer layer the electronic structures of the iron arsenic platenides are represented in the momentum space of the underlying Fe sublattice using a first principles unfolding method. We find that Ca$_{10}$(FeAs)$_{10}$(Pt$_4$As$_8$), contrary to Ca$_{10}$(FeAs)$_{10}$(Pt$_3$As$_8$), shows a net electron doping and a non-negligible interlayer coupling. Both effects could account for the difference in the critical temperatures.
Following the discovery of the potentially very high temperature superconductivity in monolayer FeSe we investigate the doping effect of Se vacancies in these materials. We find that Se vacancies pull a vacancy centered orbital below the Fermi energy that absorbs most of the doped electrons. Furthermore we find that the disorder induced broadening causes an effective hole doping. The surprising net result is that in terms of the band structure Se vacancies behave like hole dopants rather than electron dopants. Our results exclude Se vacancies as the origin of the large electron pockets measured by angle resolved photoemission spectroscopy.
We investigate the effect of disordered vacancies on the normal-state electronic structure of the newly discovered alkali-intercalated iron selenide superconductors. To this end we use a recently developed Wannier function based method to calculate f rom first principles the configuration-averaged spectral function <A(k,w)> of K0.8Fe1.6Se2 with disordered Fe and K vacancies. We find that the disorder can suppress the expected Fermi surface reconstruction without completely destroying the Fermi surface. More interestingly, the disorder effect raises the chemical potential significantly, giving enlarged electron pockets almost identical to highly doped KFe2Se2, without adding carriers to the system.
We investigate the currently debated issue concerning whether transition metal substitutions dope carriers in iron based superconductors. From first-principles calculations of the configuration-averaged spectral function of BaFe$_2$As$_2$ with disord ered Co/Zn substitutions of Fe, important doping effects are found beyond merely changing the carrier density. While the chemical potential shifts suggest doping of a large amount of carriers, a reduction of the coherent carrier density is found due to the loss of spectral weight. Therefore, none of the change in the Fermi surface, density of states, or charge distribution can be solely used for counting doped coherent carriers, let alone presenting the full effects of the disordered substitutions. Our study highlights the necessity of including disorder effects in the studies of doped materials in general.
We investigate from first principles the proposed destruction of the controversial eg pockets in the Fermi surface of NaxCoO2 due to Na disorder, by calculating its k-dependent configurational averaged spectral function <A(k,w)>. To this end, a Wanni er function based method is developed that treats the effects of disorder beyond the mean field. Remarkable spectral broadenings of order ~eV are found for the oxygen orbitals, possibly explaining their absence in the experiments. Contrary to the current lore, however, the eg pockets remain almost perfectly coherent. The developed method is expected to generate exciting opportunities in the study of the countless functional materials that owe their important electronic properties to disordered dopants.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا