ترغب بنشر مسار تعليمي؟ اضغط هنا

The optical conductivity of quasicrystals is characterized by two features not seen in ordinary metallic systems. There is an absence of the Drude peak and the interband conductivity rises linearly from a very low value up to normal metallic levels o ver a wide range of frequencies. The absence of a Drude peak has been attributed to a pseudogap at the Fermi surface but a detailed explanation of the linear behavior has not been found. Here we show that the linear conductivity, which seems to be universal in all Al based icosahedral quasicrystal families, as well as their periodic approximants, follows from a simple model that assumes that the entire Fermi surface is gapped except at a finite set of Dirac points. There is no evidence of a semiconducting gap in any of the materials suggesting that the Dirac spectrum is massless, protected by topology leading to a Weyl semimetal. This model gives rise to a linear conductivity with only one parameter, the Fermi velocity. This picture suggests that decagonal quasicrystals should, like graphene, have a frequency independent conductivity, without a Drude peak. This is in accord with the experimental data as well.
The electron-boson spectral density function I^2ChiOmega responsible for carrier scattering of the high temperature superconductor HgBa2CuO4 (Tc = 90 K) is calculated from new data on the optical scattering rate. A maximum entropy technique is used. Published data on HgBa2Ca2Cu3O8 (Tc = 130 K) are also inverted and these new results are put in the context of other known cases. All spectra (with two notable exceptions) show a peak at an energy (Omega_r) proportional to the superconducting transition temperature Omega_r ~= 6.3 kB.Tc. This charge channel relationship follows closely the magnetic resonance seen by polarized neutron scattering, Omega_r^{neutron} ~= 5.4 kB.Tc. The amplitudes of both peaks decrease strongly with increasing temperature. In some cases, the peak at Omega_r is weak and the spectrum can have additional maxima and a background extending up to several hundred meV.
44 - J. Yang , D. Huvonen , U. Nagel 2008
Optical spectroscopy on single crystals of the new iron arsenide superconductor Ba{0.55}K{0.45}Fe2As2 shows that the infrared spectrum consists of two major components: a strong metallic Drude band and a well separated mid infrared absorption centere d at 0.7 eV. It is difficult to separate the two components unambiguously but several fits of Lorentzian peaks suggest a model with a Drude peak having a plasma frequency of 1.8 to 2.1 eV and a midinfrared peak with a plasma frequency of 2.5 eV. In contrast to the cuprate superconductors the scattering rate obtained from the extended Drude model saturates at 150 meV as compared to 500 meV for a typical cuprate. Detailed analysis of the frequency dependent scattering rate shows that the charge carriers interact with broad bosonic spectrum with a peak at 25 meV and a coupling constant lambda =approx 2 at low temperature. As the temperature increases this coupling weakens to lambda=0.6 at ambient temperature. This suggests a bosonic spectrum that is similar to what is seen in the lower Tc cuprates.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا