ﻻ يوجد ملخص باللغة العربية
The optical conductivity of quasicrystals is characterized by two features not seen in ordinary metallic systems. There is an absence of the Drude peak and the interband conductivity rises linearly from a very low value up to normal metallic levels over a wide range of frequencies. The absence of a Drude peak has been attributed to a pseudogap at the Fermi surface but a detailed explanation of the linear behavior has not been found. Here we show that the linear conductivity, which seems to be universal in all Al based icosahedral quasicrystal families, as well as their periodic approximants, follows from a simple model that assumes that the entire Fermi surface is gapped except at a finite set of Dirac points. There is no evidence of a semiconducting gap in any of the materials suggesting that the Dirac spectrum is massless, protected by topology leading to a Weyl semimetal. This model gives rise to a linear conductivity with only one parameter, the Fermi velocity. This picture suggests that decagonal quasicrystals should, like graphene, have a frequency independent conductivity, without a Drude peak. This is in accord with the experimental data as well.
We use determinant quantum Monte Carlo (DQMC) simulations to study the role of electron-electron interactions on three-dimensional (3D) Dirac fermions based on the $pi$-flux model on a cubic lattice. We show that the Hubbard interaction drives the 3D
We study excitonic effects in two-dimensional massless Dirac fermions with Coulomb interactions by solving the ladder approximation to the Bethe-Salpeter equation. It is found that the general 4-leg vertex has a power law behavior with the exponent g
A Dirac-Fermi liquid (DFL)--a doped system with Dirac spectrum--is an important example of a non-Galilean-invariant Fermi liquid (FL). Real-life realizations of a DFL include, e.g., doped graphene, surface states of three-dimensional (3D) topological
To probe the charge scattering mechanism in Cd$_{3}$As$_{2}$ single crystal, we have analyzed the temperature and magnetic field dependence of the Seebeck coefficient ($S$). The large saturation value of $S$ at high field clearly demonstrates the lin
Relativistic massless Dirac fermions can be probed with high-energy physics experiments, but appear also as low-energy quasi-particle excitations in electronic band structures. In condensed matter systems, their massless nature can be protected by cr