ترغب بنشر مسار تعليمي؟ اضغط هنا

We report a method for making epitaxial superconducting contacts to semiconducting nanowires. The temperature and gate characteristics demonstrate barrier-free electrical contact, and the properties in the superconducting state are investigated at lo w temperature. Half-covering aluminum contacts are realized without the need of lithography and we demonstrate how to controllably insert high-band gap layers in the interface region. These developments are relevant to hybrid superconductor-nanowire devices that support Majorana zero energy states.
Understanding how the orbital motion of electrons is coupled to the spin degree of freedom in nanoscale systems is central for applications in spin-based electronics and quantum computation. We demonstrate this coupling of spin and orbit in a carbon nanotube quantum dot in the general multi-electron regime in presence of finite disorder. Further, we find a strong systematic dependence of the spin-orbit coupling on the electron occupation of the quantum dot. This dependence, which even includes a sign change is not demonstrated in any other system and follows from the curvature-induced spin-orbit split Dirac-spectrum of the underlying graphene lattice. Our findings unambiguously show that the spin-orbit coupling is a general property of nanotube quantum dots which provide a unique platform for the study of spin-orbit effects and their applications.
We report a systematic experimental study of mesoscopic conductance fluctuations in superconductor/normal/superconductor (SNS) devices Nb/InAs-nanowire/Nb. These fluctuations far exceed their value in the normal state and strongly depend on temperatu re even in the low-temperature regime. This dependence is attributed to high sensitivity of perfectly conducting channels to dephasing and the SNS fluctuations thus provide a sensitive probe of dephasing in a regime where normal transport fails to detect it. Further, the conductance fluctuations are strongly non-linear in bias voltage and reveal sub-gap structure. The experimental findings are qualitatively explained in terms of multiple Andreev reflections in chaotic quantum dots with imperfect contacts.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا