ترغب بنشر مسار تعليمي؟ اضغط هنا

68 - T.J. Cox , Abraham Loeb 2008
We use a N--body/hydrodynamic simulation to forecast the future encounter between the Milky Way and the Andromeda galaxies, given current observational constraints on their relative distance, relative velocity, and masses. Allowing for a comparable a mount of diffuse mass to fill the volume of the Local Group, we find that the two galaxies are likely to collide in a few billion years - within the Suns lifetime. During the the interaction, there is a chance that the Sun will be pulled away from its present orbital radius and reside in an extended tidal tail. The likelihood for this outcome increases as the merger progresses, and there is a remote possibility that our Sun will be more tightly bound to Andromeda than to the Milky Way before the final merger. Eventually, after the merger has completed, the Sun is most likely to be scattered to the outer halo and reside at much larger radii (>30 kpc). The density profiles of the stars, gas and dark matter in the merger product resemble those of elliptical galaxies. Our Local Group model therefore provides a prototype progenitor of late--forming elliptical galaxies.
95 - T. J. Cox 2007
We employ numerical simulations of galaxy mergers to explore the effect of galaxy mass ratio on merger--driven starbursts. Our numerical simulations include radiative cooling of gas, star formation, and stellar feedback to follow the interaction and merger of four disk galaxies. The galaxy models span a factor of 23 in total mass and are designed to be representative of typical galaxies in the local Universe. We find that the merger--driven star formation is a strong function of merger mass ratio, with very little, if any, induced star formation for large mass ratio mergers. We define a burst efficiency that is useful to characterize the merger--driven star formation and test that it is insensitive to uncertainties in the feedback parameterization. In accord with previous work we find that the burst efficiency depends on the structure of the primary galaxy. In particular, the presence of a massive stellar bulge stabilizes the disk and suppresses merger--driven star formation for large mass ratio mergers. Direct, co--planar merging orbits produce the largest tidal disturbance and yield that most intense burst of star formation. Contrary to naive expectations, a more compact distribution of gas or an increased gas fraction both decrease the burst efficiency. Owing to the efficient feedback model and the newer version of SPH employed here, the burst efficiencies of the mergers presented here are smaller than in previous studies.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا