ترغب بنشر مسار تعليمي؟ اضغط هنا

The Lipschitz geometry of segments of the infinite Hamming cube is studied. Tight estimates on the distortion necessary to embed the segments into spaces of continuous functions on countable compact metric spaces are given. As an application, the fir st nontrivial lower bounds on the $C(K)$-distortion of important classes of separable Banach spaces, where $K$ is a countable compact space in the family $ { [0,omega],[0,omegacdot 2],dots, [0,omega^2], dots, [0,omega^kcdot n],dots,[0,omega^omega]} ,$ are obtained.
We study the problem of improving the greedy constant or the democracy constant of a basis of a Banach space by renorming. We prove that every Banach space with a greedy basis can be renormed, for a given $vare>0$, so that the basis becomes $(1+vare) $-democratic, and hence $(2+vare)$-greedy, with respect to the new norm. If in addition the basis is bidemocratic, then there is a renorming so that in the new norm the basis is $(1+vare)$-greedy. We also prove that in the latter result the additional assumption of the basis being bidemocratic can be removed for a large class of bases. Applications include the Haar systems in $L_p[0,1]$, $1<p<infty$, and in dyadic Hardy space $H_1$, as well as the unit vector basis of Tsirelson space.
We prove thatthe Banach space $(oplus_{n=1}^infty ell_p^n)_{ell_q}$, which is isomorphic to certain Besov spaces, has a greedy basis whenever $1leq p leqinfty$ and $1<q<infty$. Furthermore, the Banach spaces $(oplus_{n=1}^infty ell_p^n)_{ell_1}$, wit h $1<ple infty$, and $(oplus_{n=1}^infty ell_p^n)_{c_0}$, with $1le p<infty$ do not have a greedy bases. We prove as well that the space $(oplus_{n=1}^infty ell_p^n)_{ell_q}$ has a 1-greedy basis if and only if $1leq p=qle infty$.
For every $alpha<omega_1$ we establish the existence of a separable Banach space whose Szlenk index is $omega^{alphaomega+1}$ and which is universal for all separable Banach spaces whose Szlenk-index does not exceed $omega^{alphaomega}$. In order to prove that result we provide an intrinsic characterization of which Banach spaces embed into a space admitting an FDD with upper estimates.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا