ترغب بنشر مسار تعليمي؟ اضغط هنا

The metric geometry of the Hamming cube and applications

261   0   0.0 ( 0 )
 نشر من قبل Thomas B. Schlumprecht
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The Lipschitz geometry of segments of the infinite Hamming cube is studied. Tight estimates on the distortion necessary to embed the segments into spaces of continuous functions on countable compact metric spaces are given. As an application, the first nontrivial lower bounds on the $C(K)$-distortion of important classes of separable Banach spaces, where $K$ is a countable compact space in the family $ { [0,omega],[0,omegacdot 2],dots, [0,omega^2], dots, [0,omega^kcdot n],dots,[0,omega^omega]} ,$ are obtained.



قيم البحث

اقرأ أيضاً

Graham and Winkler derived a formula for the determinant of the distance matrix of a full-dimensional set of $n + 1$ points ${ x_{0}, x_{1}, ldots , x_{n} }$ in the Hamming cube $H_{n} = ( { 0,1 }^{n}, ell_{1} )$. In this article we derive a formula for the determinant of the distance matrix $D$ of an arbitrary set of $m + 1$ points ${ x_{0}, x_{1}, ldots , x_{m} }$ in $H_{n}$. It follows from this more general formula that $det (D) ot= 0$ if and only if the vectors $x_{0}, x_{1}, ldots , x_{m}$ are affinely independent. Specializing to the case $m = n$ provides new insights into the original formula of Graham and Winkler. A significant difference that arises between the cases $m < n$ and $m = n$ is noted. We also show that if $D$ is the distance matrix of an unweighted tree on $n + 1$ vertices, then $langle D^{-1} mathbf{1}, mathbf{1} rangle = 2/n$ where $mathbf{1}$ is the column vector all of whose coordinates are $1$. Finally, we derive a new proof of Murugans classification of the subsets of $H_{n}$ that have strict $1$-negative type.
We give two new global and algorithmic constructions of the reproducing kernel Hilbert space associated to a positive definite kernel. We further present ageneral positive definite kernel setting using bilinear forms, and we provide new examples. Our results cover the case of measurable positive definite kernels, and we give applications to both stochastic analysisand metric geometry and provide a number of examples.
Within the class of reflexive Banach spaces, we prove a metric characterization of the class of asymptotic-$c_0$ spaces in terms of a bi-Lipschitz invariant which involves metrics that generalize the Hamming metric on $k$-subsets of $mathbb{N}$. We a pply this characterization to show that the class of separable, reflexive, and asymptotic-$c_0$ Banach spaces is non-Borel co-analytic. Finally, we introduce a relaxation of the asymptotic-$c_0$ property, called the asymptotic-subsequential-$c_0$ property, which is a partial obstruction to the equi-coarse embeddability of the sequence of Hamming graphs. We present examples of spaces that are asymptotic-subsequential-$c_0$. In particular $T^*(T^*)$ is asymptotic-subsequential-$c_0$ where $T^*$ is Tsirelsons original space.
130 - Ian Doust , Reinhard Wolf 2021
Let $D$ denote the distance matrix for an $n+1$ point metric space $(X,d)$. In the case that $X$ is an unweighted metric tree, the sum of the entries in $D^{-1}$ is always equal to $2/n$. Such trees can be considered as affinely independent subsets o f the Hamming cube $H_n$, and it was conjectured that the value $2/n$ was minimal among all such subsets. In this paper we confirm this conjecture and give a geometric interpretation of our result which applies to any subset of $H_n$.
153 - Jianbing Cao , Yifeng Xue 2013
In this paper, the problems of perturbation and expression for the Moore--Penrose metric generalized inverses of bounded linear operators on Banach spaces are further studied. By means of certain geometric assumptions of Banach spaces, we first give some equivalent conditions for the Moore--Penrose metric generalized inverse of perturbed operator to have the simplest expression $T^M(I+ delta TT^M)^{-1}$. Then, as an application our results, we investigate the stability of some operator equations in Banach spaces under different type perturbations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا