ترغب بنشر مسار تعليمي؟ اضغط هنا

97 - T. Morel , N. Castro , L. Fossati 2014
The B fields in OB stars (BOB) survey is an ESO large programme collecting spectropolarimetric observations for a large number of early-type stars in order to study the occurrence rate, properties, and ultimately the origin of magnetic fields in mass ive stars. As of July 2014, a total of 98 objects were observed over 20 nights with FORS2 and HARPSpol. Our preliminary results indicate that the fraction of magnetic OB stars with an organised, detectable field is low. This conclusion, now independently reached by two different surveys, has profound implications for any theoretical model attempting to explain the field formation in these objects. We discuss in this contribution some important issues addressed by our observations (e.g., the lower bound of the field strength) and the discovery of some remarkable objects.
63 - Thierry Morel 2014
A full exploitation of the observations provided by the CoRoT and Kepler missions depends on our ability to complement these data with accurate effective temperatures and chemical abundances. We review in this contribution the major efforts that have been undertaken to characterise late-type, seismic targets based on spectra gathered as part of the ground-based, follow-up campaigns. A specific feature of the spectroscopic studies of these stars is that the gravity can be advantageously fixed to the more accurate value derived from the pulsation spectrum. We describe the impact that such an approach has on the estimation of Teff and [Fe/H]. The relevance of red-giant seismic targets for studies of internal mixing processes and stellar populations in our Galaxy is also briefly discussed.
135 - T. Morel , A. Miglio , N. Lagarde 2014
A precise characterisation of the red giants in the seismology fields of the CoRoT satellite is a prerequisite for further in-depth seismic modelling. High-resolution FEROS and HARPS spectra were obtained as part of the ground-based follow-up campaig ns for 19 targets holding great asteroseismic potential. These data are used to accurately estimate their fundamental parameters and the abundances of 16 chemical species in a self-consistent manner. Some powerful probes of mixing are investigated (the Li and CNO abundances, as well as the carbon isotopic ratio in a few cases). The information provided by the spectroscopic and seismic data is combined to provide more accurate physical parameters and abundances. The stars in our sample follow the general abundance trends as a function of the metallicity observed in stars of the Galactic disk. After an allowance is made for the chemical evolution of the interstellar medium, the observational signature of internal mixing phenomena is revealed through the detection at the stellar surface of the products of the CN cycle. A contamination by NeNa-cycled material in the most massive stars is also discussed. With the asteroseismic constraints, these data will pave the way for a detailed theoretical investigation of the physical processes responsible for the transport of chemical elements in evolved, low- and intermediate-mass stars.
The existence of pulsations in HgMn stars is still being debated. To provide the first unambiguous observational detection of pulsations in this class of chemically peculiar objects, the bright star HD 45975 was monitored for nearly two months by the CoRoT satellite. Independent analyses of the light curve provides evidence of monoperiodic variations with a frequency of 0.7572 c/d and a peak-to-peak amplitude of ~2800 ppm. Multisite, ground-based spectroscopic observations overlapping the CoRoT observations show the star to be a long-period, single-lined binary. Furthermore, with the notable exception of mercury, they reveal the same periodicity as in photometry in the line moments of chemical species exhibiting strong overabundances (e.g., Mn and Y). In contrast, lines of other elements do not show significant variations. As found in other HgMn stars, the pattern of variability consists in an absorption bump moving redwards across the line profiles. We argue that the photometric and spectroscopic changes are more consistent with an interpretation in terms of rotational modulation of spots at the stellar surface. In this framework, the existence of pulsations producing photometric variations above the ~50 ppm level is unlikely in HD 45975. This provides strong constraints on the excitation/damping of pulsation modes in this HgMn star.
65 - T. Morel , M. Rainer , E. Poretti 2013
We present a detailed abundance study based on spectroscopic data obtained with HARPS of two solar-analogue main targets for the asteroseismology programme of the CoRoT satellite: HD 42618 and HD 43587. The atmospheric parameters and chemical composi tion are accurately determined through a fully differential analysis with respect to the Sun observed with the same instrumental set-up. Several sources of systematic errors largely cancel out with this approach, which allows us to narrow down the 1-sigma error bars to typically 20 K in effective temperature, 0.04 dex in surface gravity, and less than 0.05 dex in the elemental abundances. Although HD 42618 fulfils many requirements for being classified as a solar twin, its slight deficiency in metals and its possibly younger age indicate that, strictly speaking, it does not belong to this class of objects. On the other hand, HD 43587 is slightly more massive and evolved. In addition, marked differences are found in the amount of lithium present in the photospheres of these two stars, which might reveal different mixing properties in their interiors. These results will put tight constraints on the forthcoming theoretical modelling of their solar-like oscillations and contribute to increase our knowledge of the fundamental parameters and internal structure of stars similar to our Sun.
218 - T. Morel , A. Miglio , N. Lagarde 2012
A precise characterisation of the red giants in the seismology fields of the CoRoT satellite is a prerequisite for further in-depth seismic modelling. The optical spectra obtained for 19 targets have been used to accurately estimate their fundamental parameters and chemical composition. The extent of internal mixing is also investigated through the abundances of Li, CNO and Na (as well as 12C/13C in a few cases).
44 - Thierry Morel 2012
We review our knowledge of the mixing properties of magnetic OB stars and discuss whether the observational data presently available support, as predicted by some theoretical models, the idea that magnetic phenomena favour the transport of the chemic al elements. A (likely statistical) relationship between enhanced mixing and the existence of a field has been emerging over the last few years. As discussed in this contribution, however, a clear answer to this question is presently hampered by the lack of large and well-defined samples of magnetic and non-magnetic stars.
The frequency of maximum oscillation power measured in dwarfs and giants exhibiting solar-like pulsations provides a precise, and potentially accurate, inference of the stellar surface gravity. An extensive comparison for about 40 well-studied pulsat ing stars with gravities derived using classical methods (ionisation balance, pressure-sensitive spectral features or location with respect to evolutionary tracks) supports the validity of this technique and reveals an overall remarkable agreement with mean differences not exceeding 0.05 dex (although with a dispersion of up to ~0.2 dex). It is argued that interpolation in theoretical isochrones may be the most precise way of estimating the gravity by traditional means in nearby dwarfs. Attention is drawn to the usefulness of seismic targets as benchmarks in the context of large-scale surveys.
68 - T. Morel , G. Rauw , T. Eversberg 2010
We present preliminary results of a 3-month campaign carried out in the framework of the Mons project, where time-resolved Halpha observations are used to study the wind and circumstellar properties of a number of OB stars.
The recent downward revision of the solar photospheric abundances now leads to severe inconsistencies between the theoretical predictions for the internal structure of the Sun and the results of helioseismology. There have been claims that the solar neon abundance may be underestimated and that an increase in this poorly-known quantity could alleviate (or even completely solve) this problem. Early-type stars in the solar neighbourhood are well-suited to testing this hypothesis because they are the only stellar objects whose absolute neon abundance can be derived from the direct analysis of photospheric lines. Here we present a fully homogeneous NLTE abundance study of the optical Ne I and Ne II lines in a sample of 18 nearby, early B-type stars, which suggests log epsilon(Ne)=7.97+/-0.07 dex (on the scale in which log epsilon[H]=12) for the present-day neon abundance of the local ISM. Chemical evolution models of the Galaxy only predict a very small enrichment of the nearby interstellar gas in neon over the past 4.6 Gyr, implying that our estimate should be representative of the Sun at birth. Although higher by about 35% than the new recommended solar abundance, such a value appears insufficient by itself to restore the past agreement between the solar models and the helioseismological constraints.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا