ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectroscopic constraints for low-mass asteroseismic targets

114   0   0.0 ( 0 )
 نشر من قبل Thierry Morel
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Thierry Morel




اسأل ChatGPT حول البحث

A full exploitation of the observations provided by the CoRoT and Kepler missions depends on our ability to complement these data with accurate effective temperatures and chemical abundances. We review in this contribution the major efforts that have been undertaken to characterise late-type, seismic targets based on spectra gathered as part of the ground-based, follow-up campaigns. A specific feature of the spectroscopic studies of these stars is that the gravity can be advantageously fixed to the more accurate value derived from the pulsation spectrum. We describe the impact that such an approach has on the estimation of Teff and [Fe/H]. The relevance of red-giant seismic targets for studies of internal mixing processes and stellar populations in our Galaxy is also briefly discussed.



قيم البحث

اقرأ أيضاً

CoRoT photometric measurements of asteroseismic targets need complementary ground-based spectroscopic observations. We are using the planet-hunter HARPS spectrograph attached to the 3.6m-ESO telescope in the framework of two consecutive Large Program mes. We discuss its use to study line-profile variations and we report on a specific result obtained for the Delta Sct star HD 170699.
Stellar structure and evolution can be studied in great detail by asteroseismic methods, provided data of high precision are available. We determine the effective temperature (Teff), surface gravity (log g), metallicity, and the projected rotational velocity (v sin i) of 44 Kepler asteroseismic targets using our high-resolution (R > 20,000) spectroscopic observations; these parameters will then be used to compute asteroseismic models of these stars and to interpret the Kepler light curves.We use the method of cross correlation to measure the radial velocity (RV) of our targets, while atmospheric parameters are derived using the ROTFIT code and spectral synthesis method. We discover three double-lined spectroscopic binaries, HIP 94924, HIP 95115, and HIP 97321 - for the last system, we provide the orbital solution, and we report two suspected single-lined spectroscopic binaries, HIP94112 and HIP 96062. For all stars from our sample we derive RV, v sin i, Teff, log g, and metallicity, and for six stars, we perform a detailed abundance analysis. A spectral classification is done for 33 targets. Finally, we show that the early-type star HIP 94472 is rotating slowly (v sin i = 13 kms/1) and we confirm its classification to the Am spectral type which makes it an interesting and promising target for asteroseismic modeling. The comparison of the results reported in this paper with the information in the Kepler Input Catalog (KIC) shows an urgent need for verification and refinement of the atmospheric parameters listed in the KIC. That refinement is crucial for making a full use of the data delivered by Kepler and can be achieved only by a detailed ground-based study.
Distances from the Gaia mission will no doubt improve our understanding of stellar physics by providing an excellent constraint on the luminosity of the star. However, it is also clear that high precision stellar properties from, for example, asteros eismology, will also provide a needed input constraint in order to calibrate the methods that Gaia will use, e.g. stellar models or GSP_phot. For solar-like stars (F, G, K IV/V), asteroseismic data delivers at the least two very important quantities: (1) the average large frequency separation <Delta_nu> and (2) the frequency corresponding to the maximum of the modulated-amplitude spectrum nu_max. Both of these quantities are related directly to stellar parameters (radius and mass) and in particular their combination (gravity and density). We show how the precision in <Delta_nu>, nu_max, and atmospheric parameters T_eff and [Fe/H] affect the determination of gravity (log g) for a sample of well-known stars. We find that log g can be determined within less than 0.02 dex accuracy for our sample while considering precisions in the data expected for V<12 stars from Kepler data. We also derive masses and radii which are accurate to within 1sigma of the accepted values. This study validates the subsequent use of all of the available asteroseismic data on main sequence solar-like stars from the Kepler field (>500 IV/V stars) in order to provide a very important constraint for Gaia calibration of GSP_phot through the use of log g. We note that while we concentrate on IV/V stars, both the CoRoT and Kepler fields contain asteroseismic data on thousands of giant stars which will also provide useful calibration measures.
We present the first APOKASC catalog of spectroscopic and asteroseismic properties of 1916 red giants observed in the Kepler fields. The spectroscopic parameters provided from the Apache Point Observatory Galactic Evolution Experiment project are com plemented with asteroseismic surface gravities, masses, radii, and mean densities determined by members of the Kepler Asteroseismology Science Consortium. We assess both random and systematic sources of error and include a discussion of sample selection for giants in the Kepler fields. Total uncertainties in the main catalog properties are of order 80 K in Teff , 0.06 dex in [M/H], 0.014 dex in log g, and 12% and 5% in mass and radius, respectively; these reflect a combination of systematic and random errors. Asteroseismic surface gravities are substantially more precise and accurate than spectroscopic ones, and we find good agreement between their mean values and the calibrated spectroscopic surface gravities. There are, however, systematic underlying trends with Teff and log g. Our effective temperature scale is between 0-200 K cooler than that expected from the Infrared Flux Method, depending on the adopted extinction map, which provides evidence for a lower value on average than that inferred for the Kepler Input Catalog (KIC). We find a reasonable correspondence between the photometric KIC and spectroscopic APOKASC metallicity scales, with increased dispersion in KIC metallicities as the absolute metal abundance decreases, and offsets in Teff and log g consistent with those derived in the literature. We present mean fitting relations between APOKASC and KIC observables and discuss future prospects, strengths, and limitations of the catalog data.
We present the ground-based activities within the different working groups of the Kepler Asteroseismic Science Consortium (KASC). The activities aim at the systematic characterization of the 5000+ KASC targets, and at the collection of ground-based f ollow-up time-series data of selected promising Kepler pulsators. So far, 36 different instruments at 31 telescopes on 23 different observatories in 12 countries are in use, and a total of more than 530 observing nights has been awarded. (Based on observations made with the Isaac Newton Telescope, William Herschel Telescope, Nordic Optical Telescope, Telescopio Nazionale Galileo, Mercator Telescope (La Palma, Spain), and IAC-80 (Tenerife, Spain). Also based on observations taken at the observatories of Sierra Nevada, San Pedro Martir, Vienna, Xinglong, Apache Point, Lulin, Tautenburg, Loiano, Serra la Nave, Asiago, McDonald, Skinakas, Pic du Midi, Mauna Kea, Steward Observatory, Mt Wilson, Bialkow Observatory of the Wroclaw University, Piszkesteto Mountain Station, Observatoire de Haute Provence, and Centro Astronomico Hispano Aleman at Calar Alto. Based on data from the AAVSO International Database.)
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا