ترغب بنشر مسار تعليمي؟ اضغط هنا

We propose an extension of natural inflation, where the inflaton potential is a general periodic function. Specifically, we study elliptic inflation where the inflaton potential is given by Jacobi elliptic functions, Jacobi theta functions or the Ded ekind eta function, which appear in gauge and Yukawa couplings in the string theories compactified on toroidal backgrounds. We show that in the first two cases the predicted values of the spectral index and the tensor-to-scalar ratio interpolate from natural inflation to exponential inflation such as $R^2$- and Higgs inflation and brane inflation, where the spectral index asymptotes to $n_s = 1-2/N simeq 0.967$ for the e-folding number $N = 60$. We also show that a model with the Dedekind eta function gives a sizable running of the spectral index due to modulations in the inflaton potential. Such elliptic inflation can be thought of as a specific realization of multi-natural inflation, where the inflaton potential consists of multiple sinusoidal functions. We also discuss examples in string theory where Jacobi theta functions and the Dedekind eta function appear in the inflaton potential.
We propose a landscape of many axions, where the axion potential receives various contributions from shift symmetry breaking effects. We show that the existence of the axion with a super-Planckian decay constant is very common in the axion landscape for a wide range of numbers of axions and shift symmetry breaking terms, because of the accidental alignment of axions. The effective inflation model is either natural or multi-natural inflation in the axion landscape, depending on the number of axions and the shift symmetry breaking terms. The tension between BICEP2 and Planck could be due to small modulations to the inflaton potential or steepening of the potential along the heavy axions after the tunneling. The total duration of the slow-roll inflation our universe experienced is not significantly larger than $60$ if the typical height of the axion potentials is of order $(10^{16-17}{rm ,GeV})^4$.
We revisit the recently proposed multi-natural inflation and its realization in supergravity in light of the BICEP2 results. Multi-natural inflation is a single-field inflation model where the inflaton potential consists of multiple sinusoidal functi ons, and it is known that a sizable running spectral index can be generated, which relaxes the tension between the BICEP2 and the Planck results. In this paper we show that multi-natural inflation can accommodate a wide range of values of $(n_s, r)$, including the spectral index close to or even above unity. This will be be favored if the tension is resolved by other sources such as dark radiation, hot dark matter, or non-zero neutrino mass. We also discuss the implications for the implementation in string theory.
We show that the recently proposed multi-natural inflation can be realized within the framework of 4D ${cal N}=1$ supergravity. The inflaton potential mainly consists of two sinusoidal potentials that are comparable in size, but have different period icity with a possible non-zero relative phase. For a sub-Planckian decay constant, the multi-natural inflation model is reduced to axion hilltop inflation. We show that, taking into account the effect of the relative phase, the spectral index can be increased to give a better fit to the Planck results, with respect to the hilltop quartic inflation. We also consider a possible UV completion based on a string-inspired model. Interestingly, the Hubble parameter during inflation is necessarily smaller than the gravitino mass, avoiding possible moduli destabilization. Reheating processes as well as non-thermal leptogenesis are also discussed.
The baryon-dark matter coincidence is a long-standing issue. Interestingly, the recent observations suggest the presence of dark radiation, which, if confirmed, would pose another coincidence problem of why the density of dark radiation is comparable to that of photons. These striking coincidences may be traced back to the dark sector with particle contents and interactions that are quite similar, if not identical, to the standard model: a dark parallel world. It naturally solves the coincidence problems of dark matter and dark radiation, and predicts a sterile neutrino(s) with mass of ${cal O}(0.1 - 1)$,eV, as well as self-interacting dark matter made of the counterpart of ordinary baryons. We find a robust prediction for the relation between the abundance of dark radiation and the sterile neutrino, which can serve as the smoking-gun evidence of the dark parallel world.
In hybrid inflation, the inflaton generically has a tadpole due to gravitational effects in supergravity, which significantly changes the inflaton dynamics in high-scale supersymmetry. We point out that the tadpole can be cancelled if there is a supe rsymmetry breaking singlet with gravitational couplings, and in particular, the cancellation is automatic in no-scale supergravity. We consider the LARGE volume scenario as a concrete example and discuss the compatibility between the hybrid inflation and the moduli stabilization. We also point out that the dark radiation generated by the overall volume modulus decay naturally relaxes a tension between the observed spectral index and the prediction of the hybrid inflation.
We argue that dark radiation is naturally generated from the decay of the overall volume modulus in the LARGE volume scenario. We consider both sequestered and non-sequestered cases, and find that the axionic superpartner of the modulus is produced b y the modulus decay and it can account for the dark radiation suggested by observations, while the modulus decay through the Giudice-Masiero term gives the dominant contribution to the total decay rate. In the sequestered case, the lightest supersymmetric particles produced by the modulus decay can naturally account for the observed dark matter density. In the non-sequestered case, on the other hand, the supersymmetric particles are not produced by the modulus decay, since the soft masses are of order the heavy gravitino mass. The QCD axion will then be a plausible dark matter candidate.
We study properties of moduli stabilization in the four dimensional N = 1 supergravity theory with heavy moduli and would-be saxion-axion multiplets including light string-theoretic axions. We give general formulation for the scenario that heavy modu li and saxions are stabilized while axions remain light, assuming that moduli are stabilized near the supersymmetric solution. One can find stable vacuum, i.e. non-tachyonic saxions, in the non-supersymmetric Minkowski vacua. We also discuss the cases, where the moduli are coupled to the supersymmetry breaking sector and/or moduli have contributions to supersymmetry breaking. We also study the models with axions originating from matter-like fields. Our analysis on moduli stabilization is applicable even if there are not light axion multiplets.
We study effective theories of an axion in spontaneously broken supersymmetric theories. We consider a system where the axion supermultiplet is directly coupled to a supersymmetry breaking sector whereas the standard model sector is communicated with those sectors through loops of messenger fields. The gaugino masses and the axion-gluon coupling necessary for solving the strong CP problem are both obtained by the same effective interaction. We discuss cosmological constraints on this framework.
We study the duality cascade of softly broken supersymmetric theories. We investigate the renormalization group (RG) flow of SUSY breaking terms as well as supersymmetric couplings. It is found that the magnitudes of SUSY breaking terms are suppresse d in most regimes of the RG flow through the duality cascade. At one stage of cascading, the gaugino mass of the strongly coupled sector and scalar masses converge to certain values, which are determined by the gauge coupling and the gaugino mass of the weakly coupled sector. At the next stage, the strongly and weakly coupled sectors are interchanged with each other. We also show the possibility that cascading would be terminated by the gauge symmetry breaking, which is induced by the so-called B-term.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا