ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetars are a special type of neutron stars, considered to have extreme dipole magnetic fields reaching ~1e+11 T. The magnetar 4U 0142+61, one of prototypes of this class, was studied in broadband X-rays (0.5-70 keV) with the Suzaku observatory. In hard X-rays (15-40 keV), its 8.69 sec pulsations suffered slow phase modulations by +/-0.7 sec, with a period of ~15 hours. When this effect is interpreted as free precession of the neutron star, the object is inferred to deviate from spherical symmetry by ~1.6e-4 in its moments of inertia. This deformation, when ascribed to magnetic pressure, suggests a strong toroidal magnetic field, ~1e+12 T, residing inside the object. This provides one of the first observational approaches towards toroidal magnetic fields of magnetars.
The symbiotic X-ray binary 4U 1954+319 is a rare system hosting a peculiar neutron star (NS) and an M-type optical companion. Its ~5.4h NS spin period is the longest among all known accretion-powered pulsars and exhibited large (~7%) fluctuations ove r 8 years. A spin trend transition was detected with Swift/BAT around an X-ray brightening in 2012. The source was in quiescent and bright states before and after this outburst based on 60 ks Suzaku observations in 2011 and 2012. The observed continuum is well described by a Comptonized model with the addition of a narrow 6.4 keV Fe Kalpha line during the outburst. Spectral similarities to slowly rotating pulsars in high-mass X-ray binaries, its high pulsed fraction (~60-80%), and the location in the Corbet diagram favor high B-field (>~1e+12 G) over a weak field as in low-mass X-ray binaries. The observed low X-ray luminosity (1e+33-1e+35 erg/s), probable wide orbit, and a slow stellar wind of this SyXB make quasi-spherical accretion in the subsonic settling regime a plausible model. Assuming a ~1e+13 G NS, this scheme can explain the ~5.4 h equilibrium rotation without employing the magnetar-like field (~1e+16 G) required in the disk accretion case. The time-scales of multiple irregular flares (~50 s) can also be attributed to the free-fall time from the Alfven shell for a ~1e+13 G field. A physical interpretation of SyXBs beyond the canonical binary classifications is discussed.
In January 2009, the 2.1-sec anomalous X-ray pulsar 1E 1547.0-5408 evoked intense burst activity. A follow-up Suzaku observation on January 28 recorded enhanced persistent emission both in soft and hard X-rays (Enoto et al. 2010b). Through re-analysi s of the same Suzaku data, 18 short bursts were identified in the X-ray events recorded by the Hard X-ray Detector (HXD) and the X-ray Imaging Spectrometer (XIS). Their spectral peaks appear in the HXD-PIN band, and their 10-70 keV X-ray fluences range from ~2e-9 erg cm-2 to 1e-7 erg cm-2. Thus, the 18 events define a significantly weaker burst sample than was ever obtained, ~1e-8-1e-4 erg cm-2. In the ~0.8 to ~300 keV band, the spectra of the three brightest bursts can be represented successfully by a two-blackbody model, or a few alternative ones. A spectrum constructed by stacking 13 weaker short bursts with fluences in the range (0.2-2)e-8 erg s-1 is less curved, and its ratio to the persistent emission spectrum becomes constant at ~170 above ~8 keV. As a result, the two-blackbody model was able to reproduce the stacked weaker-burst spectrum only after adding a power-law model, of which the photon index is fixed at 1.54 as measured is the persistent spectrum. These results imply a possibility that the spectrum composition employing an optically-thick component and a hard power-law component can describe wide-band spectra of both the persistent and weak-burst emissions, despite a difference of their fluxes by two orders of magnitude. Based on the spectral similarity, a possible connection between the unresolved short bursts and the persistent emission is discussed.
The anomalous X-ray pulsar 4U 0142+61 was observed with Suzaku on 2007 August 15 for a net exposure of -100 ks, and was detected in a 0.4 to ~70 keV energy band. The intrinsic pulse period was determined as 8.68878 pm 0.00005 s, in agreement with an extrapolation from previous measurements. The broadband Suzaku spectra enabled a first simultaneous and accurate measurement of the soft and hard components of this object by a single satellite. The former can be reproduced by two blackbodies, or slightly better by a resonant cyclotron scattering model. The hard component can be approximated by a power-law of photon index Gamma h ~0.9 when the soft component is represented by the resonant cyclotron scattering model, and its high-energy cutoff is constrained as >180 keV. Assuming an isotropic emission at a distance of 3.6 kpc, the unabsorbed 1-10 keV and 10-70 keV luminosities of the soft and hard components are calculated as 2.8e+35 erg s^{-1} and 6.8e+34 erg s^{-1}, respectively. Their sum becomes ~10^3 times as large as the estimated spin-down luminosity. On a time scale of 30 ks, the hard component exhibited evidence of variations either in its normalization or pulse shape.
The fastest-rotating magnetar 1E 1547.0-5408 was observed in broad-band X-rays with Suzaku for 33 ks on 2009 January 28-29, 7 days after the onset of its latest bursting activity. After removing burst events, the absorption-uncorrected 2-10 keV flux of the persistent emission was measured with the XIS as 5.7e-11 ergs cm-2 s-1, which is 1-2 orders of magnitude higher than was measured in 2006 and 2007 when the source was less active. The persistent emission was also detected significantly with the HXD in >10 keV up to at least ~110 keV, with an even higher flux of 1.3e-10 ergs cm-2 s-1 in 20-100 keV. The pulsation was detected at least up to 70 keV at a period of 2.072135+/-0.00005 s, with a deeper modulation than was measured in a fainter state. The phase-averaged 0.7-114 keV spectrum was reproduced by an absorbed blackbody emission with a temperature of 0.65+/-0.02 keV, plus a hard power-law with a photon index of ~1.5. At a distance of 9 kpc, the bolometric luminosity of the blackbody and the 2-100 keV luminosity of the hard power-law are estimated as (6.2+/-1.2)e+35 ergs s-1 and 1.9e+36 ergs s-1, respectively, while the blackbody radius becomes ~5 km. Although the source had not been detected significantly in hard X-rays during the past fainter states, a comparison of the present and past spectra in energies below 10 keV suggests that the hard component is more enhanced than the soft X-ray component during the persistent activity.
163 - T. Enoto , Y.E. Nakagawa , N. Rea 2009
We present the first Suzaku observation of the new Soft Gamma Repeater SGR 0501+4516, performed on 2008 August 26, four days after the onset of bursting activity of this new member of the magnetar family. The soft X-ray persistent emission was detect ed with the X-ray Imaging Spectrometer (XIS) at a 0.5-10 keV flux of 3.8E-11 erg/s/cm2, with a spectrum well fitted by an absorbed blackbody plus power-law model. The source pulsation was confirmed at a period of 5.762072+/-0.000002 s, and 32 X-ray bursts were detected by the XIS, four of which were also detected at higher energies by the Hard X-ray Detector (HXD). The strongest burst, which occurred at 03:16:16.9 (UTC), was so bright that it caused instrumental saturation, but its precursor phase, lasting for about 200 ms, was detected successfully over the 0.5-200 keV range, with a fluence of ~2.1E-7 erg/cm2 and a peak intensity of about 89 Crab. The entire burst fluence is estimated to be ~50 times higher. The precursor spectrum was very hard, and well modeled by a combination of two blackbodies. We discuss the bursting activity and X/gamma-ray properties of this newly discovered Soft Gamma Repeater in comparison with other members of the class.
313 - Teruaki Enoto 2007
The accretion-powered pulsar Her X-1 was observed with Suzaku twice in its main-on state, on 2005 October 5-6 and 2006 March 29-30, for a net exposure of 30.5 ks and 34.4 ks, respectively. In the 2005 and 2006 observations, the source was detected at an average 10-30 keV intensity of 290 mCrab and 230 mCrab, respectively. The intrinsic pulse period was measured on both occasions at 1.23776 s by HXD-PIN, after barycentric and binary corrections. The pulse phase-averaged spectra in the energy range above 10 keV are well fitted by ``Negative and Positive power-law times EXponential (NPEX) model, multiplied by a fundamental cyclotron resonance scattering feature at ~36 keV which appears very significantly in the HXD-PIN data. The resonance profiles were reproduced successfully by the Lorentzian type scattering cross section, rather than by a Gaussian type alternative. The pulse phase-averaged HXD-GSO data, covering 50-120 keV, are featureless. However, in a differential spectrum between the pulse-decay phase and off-pulse phase, the second harmonic cyclotron resonance was detected in the GSO data at ~73 keV, with a depth of 1.6_-0.7^+0.9. This makes Her X-1 a 6th pulsar with established second harmonic resonance. Implications of these results are briefly discussed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا