ﻻ يوجد ملخص باللغة العربية
The fastest-rotating magnetar 1E 1547.0-5408 was observed in broad-band X-rays with Suzaku for 33 ks on 2009 January 28-29, 7 days after the onset of its latest bursting activity. After removing burst events, the absorption-uncorrected 2-10 keV flux of the persistent emission was measured with the XIS as 5.7e-11 ergs cm-2 s-1, which is 1-2 orders of magnitude higher than was measured in 2006 and 2007 when the source was less active. The persistent emission was also detected significantly with the HXD in >10 keV up to at least ~110 keV, with an even higher flux of 1.3e-10 ergs cm-2 s-1 in 20-100 keV. The pulsation was detected at least up to 70 keV at a period of 2.072135+/-0.00005 s, with a deeper modulation than was measured in a fainter state. The phase-averaged 0.7-114 keV spectrum was reproduced by an absorbed blackbody emission with a temperature of 0.65+/-0.02 keV, plus a hard power-law with a photon index of ~1.5. At a distance of 9 kpc, the bolometric luminosity of the blackbody and the 2-100 keV luminosity of the hard power-law are estimated as (6.2+/-1.2)e+35 ergs s-1 and 1.9e+36 ergs s-1, respectively, while the blackbody radius becomes ~5 km. Although the source had not been detected significantly in hard X-rays during the past fainter states, a comparison of the present and past spectra in energies below 10 keV suggests that the hard component is more enhanced than the soft X-ray component during the persistent activity.
In January 2009, the 2.1-sec anomalous X-ray pulsar 1E 1547.0-5408 evoked intense burst activity. A follow-up Suzaku observation on January 28 recorded enhanced persistent emission both in soft and hard X-rays (Enoto et al. 2010b). Through re-analysi
The Suzaku data of the highly variable magnetar 1E 1547.0$-$5408, obtained during the 2009 January activity, were reanalyzed. The 2.07 s pulsation of the 15--40 keV emission detected with the HXD was found to be phase modulated, with a period of $36.
A bright burst, followed by an X-ray tail lasting ~10 ks, was detected during an XMM-Newton observation of the magnetar 1E 1547.0-5408 carried out on 2009 February 3. The burst, also observed by SWIFT/BAT, had a spectrum well fit by the sum of two bl
This paper describes an analysis of the NuSTAR data of the fastest-rotating magnetar 1E 1547$-$5408, acquired in 2016 April for a time lapse of 151 ks. The source was detected with a 1-60 keV flux of $1.7 times 10^{-11}$ ergs s$^{-1}$ cm$^{-2}$, and
The magnetar 1E 1547.0-5408 exhibited outbursts in October 2008 and January 2009. In this paper we present in great detail the evolution of the temporal and spectral characteristics of the persistent total and pulsed emission of 1E 1547.0-5408 betwee