ترغب بنشر مسار تعليمي؟ اضغط هنا

In the previous paper we studied the transport coefficients of Quark-Gluon Plasma in finite temperature and finite density in vector and tensor modes. In this paper, we extend it to the scalar modes. We work out the decoupling problem and hydrodynami c analysis for the sound mode in charged AdS black hole and calculate the sound velocity, the charge susceptibility and the electrical conductivity. We find that Einstein relation among the conductivity, the diffusion constant and the susceptibility holds exactly.
We study the transport coefficients of Quark-Gluon-Plasma in finite temperature and finite baryon density. We use AdS/QCD of charged AdS black hole background with bulk-filling branes identifying the U(1) charge as the baryon number. We calculate the diffusion constant, the shear viscosity and the thermal conductivity to plot their density and temperature dependences. Hydrodynamic relations between those are shown to hold exactly. The diffusion constant and the shear viscosity are decreasing as a function of density for fixed total energy. For fixed temperature, the fluid becomes less diffusible and more viscous for larger baryon density.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا