ترغب بنشر مسار تعليمي؟ اضغط هنا

Sound Modes in Holographic Hydrodynamics for Charged AdS Black Hole

204   0   0.0 ( 0 )
 نشر من قبل Takuya Tsukioka
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In the previous paper we studied the transport coefficients of Quark-Gluon Plasma in finite temperature and finite density in vector and tensor modes. In this paper, we extend it to the scalar modes. We work out the decoupling problem and hydrodynamic analysis for the sound mode in charged AdS black hole and calculate the sound velocity, the charge susceptibility and the electrical conductivity. We find that Einstein relation among the conductivity, the diffusion constant and the susceptibility holds exactly.



قيم البحث

اقرأ أيضاً

We investigate the holographic entanglement entropy in the Rindler-AdS space-time to obtain an exact solution for the corresponding minimal surface. Moreover, the holographic entanglement entropy of the charged single accelerated AdS Black holes in f our dimensions is investigated. We obtain the volume of the codimension one-time slice in the bulk geometry enclosed by the minimal surface for both the RindlerAdS space-time and the charged accelerated AdS Black holes in the bulk. It is shown that the holographic entanglement entropy and the volume enclosed by the minimal hyper-surface in both the Rindler spacetime and the charged single accelerated AdS Black holes (C-metric) in the bulk decrease with increasing acceleration parameter. Behavior of the entanglement entropy, subregion size and value of the acceleration parameter are investigated. It is shown that for jAj < 0:2 a larger subregion on the boundary is equivalent to less information about the space-time.
Holography relates the quasinormal modes frequencies of AdS black holes to the pole structure of the dual field theory propagator. These modes thus provide the timescale for the approach to thermal equilibrium in the CFT. Here, we study how such pole structure and, in particular, the time to equilibrium can get modified in the presence of a black hole hair. More precisely, we consider in AdS a set of relaxed boundary conditions that allow for a low decaying graviton mode near the boundary, which triggers an additional degree of freedom. We solve the scalar field response on such background analytically and non-perturbatively in the hair parameter, and we obtain how the pole structure gets affected by the presence of a black hole hair, relative to that of the usual AdS black hole geometry. The setup we consider is a massive 3D gravity theory, which admits a one-parameter family deformation of BTZ solution and enables us to solve the problem analytically. The theory also admits an AdS$_3$ soliton which gives a family of vacua that can be constructed from the hairy black hole by means of a double Wick rotation. The spectrum of normal modes on the latter geometry can also be solved analytically; we study its properties in relation to those of the AdS$_3$ vacuum.
We consider the 5d Kerr-AdS black hole as a gravity dual to rotating quark-gluon plasma. In the holographic prescription we calculate the drag force acting on a heavy quark. According to the holographic approach a heavy quark can be considered throug h the string in the gravity dual. We study the dynamics of the string for the Kerr-AdS backgrounds with one non-zero rotational parameter and two non-zero rotational parameters that are equal in magnitude. For the case of one non-zero rotational parameter we find good agreement with the prediction from the 4d case considered by arXiv:1012.3800).
We extend the recent work on fluid-gravity correspondence to charged black-branes by determining the metric duals to arbitrary charged fluid configuration up to second order in the boundary derivative expansion. We also derive the energy-momentum ten sor and the charge current for these configurations up to second order in the boundary derivative expansion. We find a new term in the charge current when there is a bulk Chern-Simons interaction thus resolving an earlier discrepancy between thermodynamics of charged rotating black holes and boundary hydrodynamics. We have also confirmed that all our expressions are covariant under boundary Weyl-transformations as expected.
We consider the refinement of the holographic entanglement entropy for the holographic dual theories to the AdS solitons and AdS black holes, including the corrected ones by the Gauss-Bonnet term. The refinement is obtained by extracting the UV-indep endent piece of the holographic entanglement entropy, the so-called renormalized entanglement entropy which is independent of the choices of UV cutoff. Our main results are (i) the renormalized entanglement entropies of the AdS$_{d+1}$ soliton for $d=4,5$ are neither monotonically decreasing along the RG flow nor positive definite, especially around the deconfinement/confinement phase transition; (ii) there is no topological entanglement entropy for AdS$_5$ soliton even with Gauss-Bonnet correction; (iii) for the AdS black holes, the renormalized entanglement entropy obeys an expected volume law at IR regime, and the transition between UV and IR regimes is a smooth crossover even with Gauss-Bonnet correction; (iv) based on AdS/MERA conjecture, we postulate that the IR fixed-point state for the non-extremal AdS soliton is a trivial product state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا