ترغب بنشر مسار تعليمي؟ اضغط هنا

136 - K. Seki , Y. Wakisaka , T. Kaneko 2014
We show that finite temperature variational cluster approximation (VCA) calculations on an extended Falicov-Kimball model can reproduce angle-resolved photoemission spectroscopy (ARPES) results on Ta2NiSe5 across a semiconductor-to-semiconductor stru ctural phase transition at 325 K. We demonstrate that the characteristic temperature dependence of the flat-top valence band observed by ARPES is reproduced by the VCA calculation on the realistic model for an excitonic insulator only when the strong excitonic fluctuation is taken into account. The present calculations indicate that Ta2NiSe5 falls in the Bose-Einstein condensation regime of the excitonic insulator state.
When periodicity of crystal is disturbed by atomic disorder, its electronic state becomes inhomogeneous and band dispersion is obscured. In case of Fe-based superconductors, disorder of chalcogen/pnictogen height causes disorder of Fe 3d level splitt ing. Here, we report an angle-resolved photoemission spectroscopy study on FeSe_1-xTe_x with the chalcogen height disorder, showing that the disorder affects the Fe 3d band dispersions in an orbital-selective way instead of simple obscuring effect. The reverse of the Fe 3d level splitting due to the chalcogen height difference causes the splitting of the hole band with Fe 3d x^2-y^2 character around the Gamma point.
Angle resolved photoemission spectroscopy of Ba(Fe1-xCox)2As2 (x = 0.06, 0.14, and 0.24) shows that the width of the Fe 3d yz/zx hole band depends on the doping level. In contrast, the Fe 3d x^2-y^2 and 3z^2-r^2 bands are rigid and shifted by the Co doping. The Fe 3d yz/zx hole band is flattened at the optimal doping level x = 0.06, indicating that the band renormalization of the Fe 3d yz/zx band correlates with the enhancement of the superconducting transition temperature. The orbital-dependent and doping-dependent band renormalization indicates that the fluctuations responsible for the superconductivity is deeply related to the Fe 3d orbital degeneracy.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا