ترغب بنشر مسار تعليمي؟ اضغط هنا

Time Projection Chambers (TPCs) with charge readout via micro pattern gaseous detectors can provide detailed measurements of charge density distributions. We here report on measurements of alpha particle tracks, using a TPC where the drift charge is amplified with Gas Electron Multipliers and detected with a pixel ASIC. We find that by measuring the 3-D topology of drift charge and fitting for its transverse diffusion, we obtain the absolute position of tracks in the drift direction. For example, we obtain a precision of 1~cm for 1~cm-long alpha track segments. To our knowledge this is the first demonstration of such a measurement in a gas TPC. This technique has several attractive features: it does not require knowledge of the initial specific ionization, is robust against bias from diffuse charge below detection threshold, and is also robust against high charge densities that saturate the detector response.
The three-dimensional (3-D) reconstruction of nuclear recoils is of interest for directional detection of fast neutrons and for direction-sensitive searches for weakly interacting massive particles(WIMPs), which may constitute the Dark Matter of the universe. We demonstrate this capability with a miniature gas target Time Projection Chamber (TPC) where the drift charge is avalanche-multiplied with Gas Electron Multipliers (GEMs) and detected with the ATLAS FE-I3 Pixel Application Specific Integrated Circuit (ASIC). We report on performance characterization of the detector, including measurements of gain, gain resolution, point resolution, diffusion, angular resolution, and energy resolution with low-energy x-rays, cosmic rays, and alpha particles, using the gases Ar:CO$_2$ (70:30) and He:CO$_2$ (70:30) at atmospheric pressure. We discuss the implications for future, larger directional neutron and Dark Matter detectors. With an eye to designing and selecting components for these, we generalize our results into analytical expressions for detector performance whenever possible. We conclude by demonstrating the 3-D directional detection of a fast neutron source.
Gas-filled Time Projection Chambers (TPCs) with Gas Electron Multipliers (GEMs) and pixels appear suitable for direction-sensitive WIMP dark matter searches. We present the background and motivation for our work on this technology, past and ongoing p rototype work, and a development path towards an affordable, 1-$rm m^3$-scale directional dark matter detector, dcube. Such a detector may be particularly suitable for low-mass WIMP searches, and perhaps sufficiently sensitive to clearly determine whether the signals seen by DAMA, CoGeNT, and CRESST-II are due to low-mass WIMPs or background.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا