ترغب بنشر مسار تعليمي؟ اضغط هنا

Absolute Position Measurement in a Gas Time Projection Chamber via Transverse Diffusion of Drift Charge

63   0   0.0 ( 0 )
 نشر من قبل Sven Vahsen
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Time Projection Chambers (TPCs) with charge readout via micro pattern gaseous detectors can provide detailed measurements of charge density distributions. We here report on measurements of alpha particle tracks, using a TPC where the drift charge is amplified with Gas Electron Multipliers and detected with a pixel ASIC. We find that by measuring the 3-D topology of drift charge and fitting for its transverse diffusion, we obtain the absolute position of tracks in the drift direction. For example, we obtain a precision of 1~cm for 1~cm-long alpha track segments. To our knowledge this is the first demonstration of such a measurement in a gas TPC. This technique has several attractive features: it does not require knowledge of the initial specific ionization, is robust against bias from diffuse charge below detection threshold, and is also robust against high charge densities that saturate the detector response.

قيم البحث

اقرأ أيضاً

We have constructed and tested a 2d position sensitive parallel-plate gas ionization chamber with scanned charge transfer readout. The scan readout method described here is based on the development of a new position dependent charge transfer techniqu e. It has been implemented by using gate strips perpendicularly oriented to the collector strips. This solution reduces considerably the number of electronic readout channels needed to cover large detector areas. The use of a 25 micron thick kapton etched circuit allows high charge transfer efficiency with a low gating voltage, consequently needing a very simple commutating circuit. The present prototype covers 8 x 8 cm^2 with a pixel size of 1.27 x 1.27 mm^2. Depending on the intended use and beam characteristics a smaller effective pixel is feasible and larger active areas are possible. This detector can be used for X-ray or other continuous beam intensity profile monitoring.
402 - S.X. Oda , H. Hamagaki , K. Ozawa 2006
We developed a prototype time projection chamber using gas electron multipliers (GEM-TPC) for high energy heavy ion collision experiments. To investigate its performance, we conducted a beam test with 3 kinds of gases (Ar(90%)-CH4(10%), Ar(70%)-C2H6( 30%) and CF4). Detection efficiency of 99%, and spatial resolution of 79 $mu$m in the pad-row direction and 313 $mu$m in the drift direction were achieved. The test results show that the GEM-TPC meets the requirements for high energy heavy ion collision experiments. The configuration and performance of the GEM-TPC are described.
236 - C.Y. Tsang , J. Estee , R. Wang 2019
Time projection chambers (TPCs) are widely used in nuclear and particle physics. They are particularly useful when measuring reaction products from heavy ion collisions. Most nuclear experiments at low energy are performed in a fixed target configura tion, in which the unreacted beam will pass through the detection volume. As the beam intensity increases, the buildup of positive ions created from the ionization of the detector gas by the beam creates the main source of space charge, distorting the nominal electric field of the TPC. This has a profound effect on the accuracy of the measured momenta of the emitted particles. In this paper we will discuss the magnitude of the effects and construct an observable more appropriate for fixed target experiments to study the effects. We also will present an algorithm for correcting the space charge and some of the implications it has on the momentum determination.
62 - D. Autiero 2007
One of the three X-ray detectors of the CAST experiment searching for solar axions is a Time Projection Chamber (TPC) with a multi-wire proportional counter (MWPC) as a readout structure. Its design has been optimized to provide high sensitivity to t he detection of the low intensity X-ray signal expected in the CAST experiment. A low hardware threshold of 0.8 keV is safely set during normal data taking periods, and the overall efficiency for the detection of photons coming from conversion of solar axions is 62 %. Shielding has been installed around the detector, lowering the background level to 4.10 x 10^-5 counts/cm^2/s/keV between 1 and 10 keV. During phase I of the CAST experiment the TPC has provided robust and stable operation, thus contributing with a competitive result to the overall CAST limit on axion-photon coupling and mass.
For the International Large Detector concept at the planned International Linear Collider, the use of time projection chambers (TPC) with micro-pattern gas detector readout as the main tracking detector is investigated. In this paper, results from a prototype TPC, placed in a 1 T solenoidal field and read out with three independent GEM-based readout modules, are reported. The TPC was exposed to a 6 GeV electron beam at the DESY II synchrotron. The efficiency for reconstructing hits, the measurement of the drift velocity, the space point resolution and the control of field inhomogeneities are presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا