ترغب بنشر مسار تعليمي؟ اضغط هنا

192 - Susan G. Neff , Jean A. Eilek , 2015
We present deep GALEX images of NGC 5128, the parent galaxy of Centaurus A. We detect a striking weather ribbon of Far-UV and H$alpha$ emission, which extends more than 35 kpc northeast of the galaxy. The ribbon is associated with a knotty ridge of r adio/X-ray emission, and is an extension of the previously known string of optical emission-line filaments. Many phenomena in the region are too short-lived to have survived transit out from the inner galaxy; something must be driving them locally. We also detect Far-UV emission from the galaxys central dust lane. Combining this with previous radio and Far-IR measurements, we infer an active starburst in the central galaxy, which is currently forming stars at $sim 2 M_{sun}$yr$^{-1}$, and has been doing so for 50-100Myr. If the wind from this starburst is enhanced by energy and mass driven out from the AGN, the powerful augmented wind can be the driver needed for the northern weather system. We argue that both the diverse weather system, and the enhanced radio emission in the same region, result from the winds encounter with cool gas left by one of the recent merger/encounter events in the history of NGC 5128.
394 - Susan G. Neff , Jean A. Eilek , 2015
We present deep radio images of the inner 50 kpc of Centaurus A, taken with the Karl G. Jansky Very Large Array (VLA) at 90cm. We focus on the Transition Regions between the inner galaxy - including the active nucleus, inner radio lobes, and star-for ming disk - and the outer radio lobes. We detect previously unknown extended emission around the Inner Lobes, including radio emission from the star-forming disk. We find that the radio-loud part of the North Transition Region, known as the North Middle Lobe, is significantly overpressured relative to the surrounding ISM. We see no evidence for a collimated flow from the Active Galactic Nucleus (AGN) through this region. Our images show that the structure identified by Morganti et al. (1999) as a possible large-scale jet appears to be part of a narrow ridge of emission within the broader, diffuse, radio-loud region. This knotty radio ridge is coincident with other striking phenomena: compact X-ray knots, ionized gas filaments, and streams of young stars. Several short-lived phenomena in the North Transition Region, as well as the frequent re-energization required by the Outer Lobes, suggest that energy must be flowing through both Transition Regioins at the present epoch. We suggest that the energy flow is in the form of a galactic wind.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا