ترغب بنشر مسار تعليمي؟ اضغط هنا

The Complex North Transition Region of Centaurus A: A Galactic Wind

225   0   0.0 ( 0 )
 نشر من قبل Susan Neff
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present deep GALEX images of NGC 5128, the parent galaxy of Centaurus A. We detect a striking weather ribbon of Far-UV and H$alpha$ emission, which extends more than 35 kpc northeast of the galaxy. The ribbon is associated with a knotty ridge of radio/X-ray emission, and is an extension of the previously known string of optical emission-line filaments. Many phenomena in the region are too short-lived to have survived transit out from the inner galaxy; something must be driving them locally. We also detect Far-UV emission from the galaxys central dust lane. Combining this with previous radio and Far-IR measurements, we infer an active starburst in the central galaxy, which is currently forming stars at $sim 2 M_{sun}$yr$^{-1}$, and has been doing so for 50-100Myr. If the wind from this starburst is enhanced by energy and mass driven out from the AGN, the powerful augmented wind can be the driver needed for the northern weather system. We argue that both the diverse weather system, and the enhanced radio emission in the same region, result from the winds encounter with cool gas left by one of the recent merger/encounter events in the history of NGC 5128.



قيم البحث

اقرأ أيضاً

486 - Susan G. Neff , Jean A. Eilek , 2015
We present deep radio images of the inner 50 kpc of Centaurus A, taken with the Karl G. Jansky Very Large Array (VLA) at 90cm. We focus on the Transition Regions between the inner galaxy - including the active nucleus, inner radio lobes, and star-for ming disk - and the outer radio lobes. We detect previously unknown extended emission around the Inner Lobes, including radio emission from the star-forming disk. We find that the radio-loud part of the North Transition Region, known as the North Middle Lobe, is significantly overpressured relative to the surrounding ISM. We see no evidence for a collimated flow from the Active Galactic Nucleus (AGN) through this region. Our images show that the structure identified by Morganti et al. (1999) as a possible large-scale jet appears to be part of a narrow ridge of emission within the broader, diffuse, radio-loud region. This knotty radio ridge is coincident with other striking phenomena: compact X-ray knots, ionized gas filaments, and streams of young stars. Several short-lived phenomena in the North Transition Region, as well as the frequent re-energization required by the Outer Lobes, suggest that energy must be flowing through both Transition Regioins at the present epoch. We suggest that the energy flow is in the form of a galactic wind.
We present Submillimeter Array (SMA) molecular line observations in two 2 GHz-wide bands centered at 217.5 and 227.5 GHz, toward the massive star forming region W51 North. We identified 84 molecular line transitions from 17 species and their isotopol ogues. The molecular gas distribution of these lines mainly peaks in the continuum position of W51 North, and has a small tail extending to the west, probably associated with W51 d2. In addition to the commonly detected nitrogen and oxygen-bearing species, we detected a large amount of transitions of the Acetone (CH$_3$COCH$_3$) and Methyl Formate (CH$_3$OCHO), which may suggest that these molecules are present in an early evolutionary stage of the massive stars. We also found that W51 North is an ethanol-rich source. There is no obvious difference in the molecular gas distributions between the oxygen-bearing and nitrogen-bearing molecules. Under the assumption of Local Thermodynamic Equilibrium (LTE), with the XCLASS tool, the molecular column densities, and rotation temperatures are estimated. We found that the oxygen-bearing molecules have considerable higher column densities and fractional abundances than the nitrogen-bearing molecules. The rotation temperatures range from 100 to 200 K, suggesting that the molecular emission could be originated from a warm environment. Finally, based on the gas distributions, fractional abundances and the rotation temperatures, we conclude that CH$_3$OH, C$_2$H$_5$OH, CH$_3$COCH$_3$ and CH$_3$CH$_2$CN might be synthesized on the grain surface, while gas phase chemistry is responsible for the production of CH$_3$OCH$_3$, CH$_3$OCHO and CH$_2$CHCN.
We present new radio and optical images of the nearest radio galaxy Centaurus A and its host galaxy NGC 5128. We focus our investigation on the northern transition region, where energy is transported from the ~5 kpc (~5 arcmin) scales of the Northern Inner Lobe (NIL) to the ~30 kpc (~30 arcmin) scales of the Northern Middle Lobe (NML). Our Murchison Widefield Array observations at 154 MHz and our Parkes radio telescope observations at 2.3 GHz show diffuse radio emission connecting the NIL to the NML, in agreement with previous Australia Telescope Compact Array observations at 1.4 GHz. Comparison of these radio data with our widefield optical emission line images show the relationship between the NML radio emission and the ionised filaments that extend north from the NIL, and reveal a new ionised filament to the east, possibly associated with a galactic wind. Our deep optical images show clear evidence for a bipolar outflow from the central galaxy extending to intermediate scales, despite the non-detection of a southern radio counterpart to the NML. Thus, our observational overview of Centaurus A reveals a number of features proposed to be associated with AGN feedback mechanisms, often cited as likely to have significant effects in galaxy evolution models. As one of the closest galaxies to us, Centaurus A therefore provides a unique laboratory to examine feedback mechanisms in detail.
180 - A. Roman-Lopes 2011
In this work I communicate the detection of a new Galactic Wolf-Rayet star (WR60a) in Centaurus. The H- and K-band spectra of WR60a, show strong carbon near-infrared emission lines, characteristic of Wolf-Rayet stars of the WC5-7 sub-type. Adopting m ean absolute magnitude M$_K$ and mean intrinsic ($J-K_S$) and ($H-K_S$) colours, it was found that WR60a suffer a mean visual extinction of 3.8$pm$1.3 magnitudes, being located at a probable heliocentric distance of 5.2$pm$0.8 Kpc, which for the related Galactic longitude (l=312) puts this star probably in the Carina-Sagittarius arm at about 5.9 kpc from the Galactic center. I searched for clusters in the vicinity of WR60a, and in principle found no previously known clusters in a search radius region of several tens arc-minutes. The detection of a well isolated WR star induced us to seek for some still unknown cluster, somewhere in the vicinity of WR60a. From inspection of 5.8$mu$m and 8.0$mu$m Spitzer/IRAC GLIMPSE images of the region around the new WR star, it was found strong mid-infrared extended emission at about 13.5 arcmin south-west of WR60a. The study of the the H-K$_S$ colour distribution of point sources associated with the extended emission, reveals the presence of a new Galactic cluster candidate probably formed by at least 85 stars.
It has been recently proposed that the broad line region in active galactic nuclei originates from dusty clouds driven from the accretion disk by radiation pressure, at a distance from the black hole where the disk is cooler than the dust sublimation temperature. We test this scenario by checking the consistency of independent broad line region and accretion disk reverberation measurements, for a sample of 11 well studied active galactic nuclei. We show that independent disk and broad line region reverberation mapping measurements are compatible with a universal disk temperature at the H{beta} radius of T[R(H{beta})]=1670(231) K which is close to typical dust sublimation temperatures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا