ترغب بنشر مسار تعليمي؟ اضغط هنا

79 - Subo Dong 2015
We report the discovery of ASASSN-15lh (SN 2015L), which we interpret as the most luminous supernova yet found. At redshift z = 0.2326, ASASSN-15lh reached an absolute magnitude of M_{u,AB} = -23.5+/-0.1 and bolometric luminosity L_bol = (2.2+/-0.2)x 10^45 ergs s^-1, which is more than twice as luminous as any previously known supernova. It has several major features characteristic of the hydrogen-poor super-luminous supernovae (SLSNe-I), whose energy sources and progenitors are currently poorly understood. In contrast to most previously known SLSNe-I that reside in star-forming dwarf galaxies, ASASSN-15lh appears to be hosted by a luminous galaxy (M_K ~ -25.5) with little star formation. In the 4 months since first detection, ASASSN-15lh radiated (1.1+/- 0.2)x10^52 ergs, challenging the magnetar model for its engine.
286 - Subo Dong 2014
We discover clear doubly-peaked line profiles in 3 out of ~20 type Ia supernovae (SNe Ia) with high-quality nebular-phase spectra. The profiles are consistently present in three well-separated Co/Fe emission features. The two peaks are respectively b lue-shifted and red-shifted relative to the host galaxies and are separated by ~5000 km/s. The doubly-peaked profiles directly reflect a bi-modal velocity distribution of the radioactive Ni56 in the ejecta that powers the emission of these SNe. Due to their random orientations, only a fraction of SNe with intrinsically bi-modal velocity distributions will appear as doubly-peaked spectra. Therefore SNe with intrinsic bi-modality are likely common, especially among the SNe in the low-luminosity part on the Philips relation (Delta m15(B) >~ 1.3; ~40% of all SNe Ia). Such bi-modality is naturally expected from direct collisions of white dwarfs (WDs) due to the detonation of both WDs and is demonstrated in a 3D 0.64 M_Sun-0.64 M_Sun WD collision simulation. In the future, with a large sample of nebular spectra and a comprehensive set of numerical simulations, the collision model can be unambiguously tested as the primary channel for type Ia SNe, and the distribution of nebular line profiles will either be a smoking gun or rule it out.
72 - Subo Dong 2013
We use 12000 stars from Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) spectroscopic data to show that the metallicities of Kepler field stars as given in the Kepler Input Catalog (KIC) systematically underestimate both the true m etallicity and the dynamic range of the Kepler sample. Specifically, to the first order approximation, we find [Fe/H]_KIC = -0.20 + 0.43 [Fe/H]_LAMOST, with a scatter of ~0.25 dex, due almost entirely to errors in KIC. This relation is most secure for -0.3<[Fe/H]_LAMOST<+0.4 where we have >200 comparison stars per 0.1 dex bin and good consistency is shown between metallicities determined by LAMOST and high-resolution spectra. It remains approximately valid in a slightly broader range. When the relation is inverted, the error in true metallicity as derived from KIC is (0.25 dex)/0.43~0.6 dex. We thereby quantitatively confirm the cautionary note by Brown et al. (2011) that KIC estimates of [Fe/H] should not be used by anyone with a particular interest in stellar metallicities. Fortunately, many more LAMOST spectroscopic metallicities will be available in the near future.
We propose a stringent observational test on the formation of warm Jupiters (gas-giant planets with 10 d <~ P <~ 100 d) by high-eccentricity (high-e) migration mechanisms. Unlike hot Jupiters, the majority of observed warm Jupiters have pericenter di stances too large to allow efficient tidal dissipation to induce migration. To access the close pericenter required for migration during a Kozai-Lidov cycle, they must be accompanied by a strong enough perturber to overcome the precession caused by General Relativity (GR), placing a strong upper limit on the perturbers separation. For a warm Jupiter at a ~ 0.2 AU, a Jupiter-mass (solar-mass) perturber is required to be <~ 3 AU (<~ 30 AU) and can be identified observationally. Among warm Jupiters detected by Radial Velocities (RV), >~ 50% (5 out of 9) with large eccentricities (e >~ 0.4) have known Jovian companions satisfying this necessary condition for high-e migration. In contrast, <~ 20 % (3 out of 17) of the low-e (e <~ 0.2) warm Jupiters have detected additional Jovian companions, suggesting that high-e migration with planetary perturbers may not be the dominant formation channel. Complete, long-term RV follow-ups of the warm-Jupiter population will allow a firm upper limit to be put on the fraction of these planets formed by high-e migration. Transiting warm Jupiters showing spin-orbit misalignments will be interesting to apply our test. If the misalignments are solely due to high-e migration as commonly suggested, we expect that the majority of warm Jupiters with low-e (e <~0.2) are not misaligned, in contrast with low-e hot Jupiters.
Upcoming direct-imaging experiments may detect a new class of long-period, highly luminous, tidally powered extrasolar gas giants. Even though they are hosted by ~ Gyr-old main-sequence stars, they can be as hot as young Jupiters at ~100 Myr, the pri me targets of direct-imaging surveys. They are on years-long orbits and presently migrating to feed the hot Jupiters. They are expected from high-e migration mechanisms, in which Jupiters are excited to highly eccentric orbits and then shrink semi-major axis by a factor of ~10-100 due to tidal dissipation at close periastron passages. The dissipated orbital energy is converted to heat, and if it is deposited deep enough into the atmosphere, the planet likely radiates steadily at luminosity L ~ 100-1000 L_Jup(2 x 10-7-2 x 10-6 L_Sun) during a typical ~ Gyr migration timescale. Their large orbital separations and expected high planet-to-star flux ratios in IR make them potentially accessible to high-contrast imaging instruments on 10 m class telescopes. ~10 such planets are expected to exist around FGK dwarfs within ~50 pc. Long-period radial velocity planets are viable candidates, and the highly eccentric planet HD 20782b at maximum angular separation ~0.08 is a promising candidate. Directly imaging these tidally powered Jupiters would enable a direct test of high-e migration mechanisms. Once detected, the luminosity would provide a direct measurement of the migration rate, and together with mass (and possibly radius) estimate, they would serve as a laboratory to study planetary spectral formation and tidal physics.
With 16-month Kepler data, 14 long-period (40 d - 265 d) eclipsing binaries on highly eccentric orbits (minimum e between 0.5 and 0.85) are recognized from their closely separated primary and secondary eclipses (Delta t_I,II = 3 d - 10 d). These syst ems confirm the existence of a previously hinted binary population situated near a constant angular momentum track at P(1-e^2)^(3/2) ~ 15 d, close to the tidal circularization period P_circ. They may be presently migrating due to tidal dissipation and form a steady-state stream (~1% of stars) feeding the close-binary population (few percent of stars). If so, future Kepler data releases will reveal a growing number (dozens) of systems at longer periods, following dN/dlgP propto P^(1/3) with increasing eccentricities reaching e -> 0.98 for P -> 1000d. Radial-velocity follow up of long-period eclipsing binaries with no secondary eclipses could offer a significantly larger sample. Orders of magnitude more (hundreds) may reveal their presence from periodic eccentricity pulses, such as tidal ellipsoidal variations, near pericenter passages. Several new few-day-long eccentricity-pulse candidates with long period (P = 25 d - 80 d) are reported.
We combine all available information to constrain the nature of OGLE-2005-BLG-071Lb, the second planet discovered by microlensing and the first in a high-magnification event. These include photometric and astrometric measurements from Hubble Space Te lescope, as well as constraints from higher order effects extracted from the ground-based light curve, such as microlens parallax, planetary orbital motion and finite-source effects. Our primary analysis leads to the conclusion that the host of Jovian planet OGLE-2005-BLG-071Lb is an M dwarf in the foreground disk with mass M= 0.46 +/- 0.04 Msun, distance D_l = 3.3 +/- 0.4 kpc, and thick-disk kinematics v_LSR ~ 103 km/s. From the best-fit model, the planet has mass M_p = 3.8 +/- 0.4 M_Jup, lies at a projected separation r_perp = 3.6 +/- 0.2 AU from its host and so has an equilibrium temperature of T ~ 55 K, i.e., similar to Neptune. A degenerate model less favored by Deltachi^2 = 2.1 (or 2.2, depending on the sign of the impact parameter) gives similar planetary mass M_p = 3.4 +/- 0.4 M_Jup with a smaller projected separation, r_perp = 2.1 +/- 0.1 AU, and higher equilibrium temperature T ~ 71 K. These results from the primary analysis suggest that OGLE-2005-BLG-071Lb is likely to be the most massive planet yet discovered that is hosted by an M dwarf. However, the formation of such high-mass planetary companions in the outer regions of M-dwarf planetary systems is predicted to be unlikely within the core-accretion scenario. There are a number of caveats to this primary analysis, which assumes (based on real but limited evidence) that the unlensed light coincident with the source is actually due to the lens, that is, the planetary host. However, these caveats could mostly be resolved by a single astrometric measurement a few years after the event.
261 - Subo Dong , I.A. Bond , A. Gould 2008
We report the detection of the cool, Jovian-mass planet MOA-2007-BLG-400Lb. The planet was detected in a high-magnification microlensing event (with peak magnification A_max = 628) in which the primary lens transited the source, resulting in a dramat ic smoothing of the peak of the event. The angular extent of the region of perturbation due to the planet is significantly smaller than the angular size of the source, and as a result the planetary signature is also smoothed out by the finite source size. Thus the deviation from a single-lens fit is broad and relatively weak (~ few percent). Nevertheless, we demonstrate that the planetary nature of the deviation can be unambiguously ascertained from the gross features of the residuals, and detailed analysis yields a fairly precise planet/star mass ratio of q = 0.0026+/-0.0004, in accord with the large significance (Deltachi^2=1070) of the detection. The planet/star projected separation is subject to a strong close/wide degeneracy, leading to two indistinguishable solutions that differ in separation by a factor of ~8.5. Upper limits on flux from the lens constrain its mass to be M < 0.75 M_Sun (assuming it is a main-sequence star). A Bayesian analysis that includes all available observational constraints indicates a primary in the Galactic bulge with a mass of ~0.2-0.5 M_Sun and thus a planet mass of ~ 0.5-1.3 M_Jupiter. The separation and equilibrium temperature are ~0.6-1.1AU (~5.3-9.7AU) and ~103K (~34K) for the close (wide) solution. If the primary is a main-sequence star, follow-up observations would enable the detection of its light and so a measurement of its mass and distance.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا