ترغب بنشر مسار تعليمي؟ اضغط هنا

The standard model of cosmology is founded on the basis that the expansion rate of the universe is accelerating at present --- as was inferred originally from the Hubble diagram of Type Ia supernovae. There exists now a much bigger database of supern ovae so we can perform rigorous statistical tests to check whether these standardisable candles indeed indicate cosmic acceleration. Taking account of the empirical procedure by which corrections are made to their absolute magnitudes to allow for the varying shape of the light curve and extinction by dust, we find, rather surprisingly, that the data are still quite consistent with a constant rate of expansion.
169 - Paul Hunt , Subir Sarkar 2013
Detailed knowledge of the primordial power spectrum of curvature perturbations is essential both in order to elucidate the physical mechanism (`inflation) which generated it, and for estimating the cosmological parameters from observations of the cos mic microwave background and large-scale structure. Hence it ought to be extracted from such data in a model-independent manner, however this is difficult because relevant cosmological observables are given by a convolution of the primordial perturbations with some smoothing kernel which depends on both the assumed world model and the matter content of the universe. Moreover the deconvolution problem is ill-conditioned so a regularisation scheme must be employed to control error propagation. We demonstrate that `Tikhonov regularisation can robustly reconstruct the primordial spectrum from multiple cosmological data sets, a significant advantage being that both its uncertainty and resolution are then quantified. Using Monte Carlo simulations we investigate several regularisation parameter selection methods and find that generalised cross-validation and Mallows $C_p$ method give optimal results. We apply our inversion procedure to data from the Wilkinson Microwave Anisotropy Probe, other ground-based small angular scale CMB experiments, and the Sloan Digital Sky Survey. The reconstructed spectrum (assuming the standard $Lambda$CDM cosmology) is emph{not} scale-free but has an infrared cutoff at $k lesssim 5 times 10^{-4}; mathrm{Mpc}^{-1}$ (due to the anomalously low CMB quadrupole) and several features with $sim 2 sigma$ significance at $k/mathrm{Mpc}^{-1} sim$ 0.0013--0.0025, 0.0362--0.0402 and 0.051--0.056, reflecting the `WMAP glitches. To test whether these are indeed real will require more accurate data, such as from the Planck satellite and new ground-based experiments.
Multiple inflation is a model based on N=1 supergravity wherein there are sudden changes in the mass of the inflaton because it couples to flat direction scalar fields which undergo symmetry breaking phase transitions as the universe cools. The resul ting brief violations of slow-roll evolution generate a non-gaussian signal which we find to be oscillatory and yielding f_NL ~ 5-20. This is potentially detectable by e.g. Planck but would require new bispectrum estimators to do so. We also derive a model-independent result relating the period of oscillations of a phase transition during inflation to the period of oscillations in the primordial curvature perturbation generated by the inflaton.
The form of the inflationary potential is severely restricted if one requires that it be natural in the technical sense, i.e. terms of unrelated origin are not required to be correlated. We determine the constraints on observables that are implied in such natural inflationary models, in particular on $r$, the ratio of tensor to scalar perturbations. We find that the naturalness constraint does not require $r$ to be lare enough to be detectable by the forthcoming searches for B-mode polarisation in CMB maps. We show also that the value of $r$ is a sensitive discriminator between inflationary models.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا