ترغب بنشر مسار تعليمي؟ اضغط هنا

We have obtained accurate ab initio quartet potentials for the diatomic metastable triplet helium + alkali-metal (Li, Na, K, Rb) systems, using all-electron restricted open-shell coupled cluster singles and doubles with noniterative triples correctio ns [CCSD(T)] calculations and accurate calculations of the long-range $C_6$ coefficients. These potentials provide accurate ab initio quartet scattering lengths, which for these many-electron systems is possible, because of the small reduced masses and shallow potentials that results in a small amount of bound states. Our results are relevant for ultracold metastable triplet helium + alkali-metal mixture experiments.
We have realized Bose-Einstein condensation (BEC) of 87Rb in the F=2, m_F=2 hyperfine substate in a hybrid trap, consisting of a quadrupole magnetic field and a single optical dipole beam. The symmetry axis of the quadrupole magnetic trap coincides w ith the optical beam axis, which gives stronger axial confinement than previous hybrid traps. After loading 2x10^6 atoms at 14 muK from a quadrupole magnetic trap into the hybrid trap, we perform efficient forced evaporation and reach the onset of BEC at a temperature of 0.5 muK and with 4x10^5 atoms. We also obtain thermal clouds of 1x10^6 atoms below 1 muK in a pure single beam optical dipole trap, by ramping down the magnetic field gradient after evaporative cooling in the hybrid trap.
Recently we have reported (Knoop et al. [arXiv:1404.4826]) on an experimental determination of metastable triplet $^4$He+$^{87}$Rb scattering length by performing thermalization measurements for an ultracold mixture in a quadrupole magnetic trap. Her e we present our experimental apparatus and elaborate on these thermalization measurements. In particular we give a theoretical description of interspecies thermalization rate for a quadrupole magnetic trap, i. e. in the presence of Majorana heating, and a general procedure to extract the scattering length from the elastic cross section at finite temperature based on knowledge of the $C_6$ coefficient alone. In addition, from our thermalization data we obtain an upper limit of the total interspecies two-body loss rate coefficient of $1.5times 10^{-12}$ cm$^3$s$^{-1}$.
We have investigated the ultracold interspecies scattering properties of metastable triplet He and Rb. We performed state-of-the-art ab initio calculations of the relevant interaction potential, and measured the interspecies elastic cross section for an ultracold mixture of metastable triplet $^4$He and $^{87}$Rb in a quadrupole magnetic trap at a temperature of 0.5 mK. Our combined theoretical and experimental study gives an interspecies scattering length $a_{4+87}=+17^{+1}_{-4}$ $a_0$, which prior to this work was unknown. More general, our work shows the possibility of obtaining accurate scattering lengths using ab initio calculations for a system containing a heavy, many-electron atom, such as Rb.
We have analyzed our recently-measured three-body loss rate coefficient for a Bose-Einstein condensate of spin-polarized metastable triplet 4He atoms in terms of Efimov physics. The large value of the scattering length for these atoms, which provides access to the Efimov regime, arises from a nearby potential resonance. We find the loss coefficient to be consistent with the three-body parameter (3BP) found in alkali-metal experiments, where Feshbach resonances are used to tune the interaction. This provides new evidence for a universal 3BP, the first outside the group of alkali-metal elements. In addition, we give examples of other atomic systems without Feshbach resonances but with a large scattering length that would be interesting to analyze once precise measurements of three-body loss are available.
We have studied the decay of a Bose-Einstein condensate of metastable helium atoms in an optical dipole trap. In the regime where two- and three-body losses can be neglected we show that the Bose-Einstein condensate and the thermal cloud show fundame ntally different decay characteristics. The total number of atoms decays exponentially with time constant tau; however, the thermal cloud decays exponentially with time constant (4/3)tau and the condensate decays much faster, and non-exponentially. We show that this behaviour, which should be present for all BECs in thermal equilibrium with a considerable thermal fraction, is due to a transfer of atoms from the condensate to the thermal cloud during its decay.
We have experimentally studied the magnetic-field dependence of the decay of a Bose-Einstein condensate of metastable 4He atoms confined in an optical dipole trap, for atoms in the m=+1 and m=-1 magnetic substates, and up to 450 G. Our measurements c onfirm long-standing calculations of the two-body loss rate coefficient that show an increase above 50 G. We demonstrate that for m=-1 atoms, decay is due to three-body recombination only, with a three-body loss rate coefficient of 6.5(0.4)(0.6)10^(-27)cm^6s^(-1), which is interesting in the context of universal few-body theory. We have also searched for a recently-predicted d-wave Feshbach resonance, but did not observe it.
463 - U. Dammalapati , L. Willmann , 2011
We have calculated the s-wave scattering length of all the even isotopes of calcium (Ca) and barium (Ba), in order to investigate the prospect of Bose-Einstein condensation (BEC). For Ca we have used an accurate molecular potential based on detailed spectroscopic data. Our calculations show that Ca does not provide other isotopes alternative to the recently Bose condensed 40Ca that suffers strong losses because of a very large scattering length. For Ba we show by using a model potential that the even isotopes cover a broad range of scattering lengths, opening the possibility of BEC for at least one of the isotopes.
We have studied magnetic Feshbach resonances in an ultracold sample of Na prepared in the absolute hyperfine ground state. We report on the observation of three s-, eight d-, and three g-wave Feshbach resonances, including a more precise determinatio n of two known s-wave resonances, and one s-wave resonance at a magnetic field exceeding 200mT. Using a coupled-channels calculation we have improved the sodium ground-state potentials by taking into account these new experimental data, and derived values for the scattering lengths. In addition, a description of the molecular states leading to the Feshbach resonances in terms of the asymptotic-bound-state model is presented.
We report on the observation of an elementary exchange process in an optically trapped ultracold sample of atoms and Feshbach molecules. We can magnetically control the energetic nature of the process and tune it from endoergic to exoergic, enabling the observation of a pronounced threshold behavior. In contrast to relaxation to more deeply bound molecular states, the exchange process does not lead to trap loss. We find excellent agreement between our experimental observations and calculations based on the solutions of three-body Schrodinger equation in the adiabatic hyperspherical representation. The high efficiency of the exchange process is explained by the halo character of both the initial and final molecular states.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا