ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic-field dependent trap loss of ultracold metastable helium

88   0   0.0 ( 0 )
 نشر من قبل Steven Knoop
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have experimentally studied the magnetic-field dependence of the decay of a Bose-Einstein condensate of metastable 4He atoms confined in an optical dipole trap, for atoms in the m=+1 and m=-1 magnetic substates, and up to 450 G. Our measurements confirm long-standing calculations of the two-body loss rate coefficient that show an increase above 50 G. We demonstrate that for m=-1 atoms, decay is due to three-body recombination only, with a three-body loss rate coefficient of 6.5(0.4)(0.6)10^(-27)cm^6s^(-1), which is interesting in the context of universal few-body theory. We have also searched for a recently-predicted d-wave Feshbach resonance, but did not observe it.

قيم البحث

اقرأ أيضاً

Recently we have reported (Knoop et al. [arXiv:1404.4826]) on an experimental determination of metastable triplet $^4$He+$^{87}$Rb scattering length by performing thermalization measurements for an ultracold mixture in a quadrupole magnetic trap. Her e we present our experimental apparatus and elaborate on these thermalization measurements. In particular we give a theoretical description of interspecies thermalization rate for a quadrupole magnetic trap, i. e. in the presence of Majorana heating, and a general procedure to extract the scattering length from the elastic cross section at finite temperature based on knowledge of the $C_6$ coefficient alone. In addition, from our thermalization data we obtain an upper limit of the total interspecies two-body loss rate coefficient of $1.5times 10^{-12}$ cm$^3$s$^{-1}$.
In an ultracold, optically trapped mixture of $^{87}$Rb and metastable triplet $^4$He atoms we have studied trap loss for different spin-state combinations, for which interspecies Penning ionization is the main two-body loss process. We observe long trapping lifetimes for the purely quartet spin-state combination, indicating strong suppression of Penning ionization loss by at least two orders of magnitude. For the other spin-mixtures we observe short lifetimes that depend linearly on the doublet character of the entrance channel. We compare the extracted loss rate coefficient with recent predictions of multichannel quantum-defect theory for reactive collisions involving a strong exothermic loss channel and find near-universal loss for doublet scattering. Our work demonstrates control of reactive collisions by internal atomic state preparation.
We demonstrate a simple scheme to reach Bose-Einstein condensation (BEC) of metastable triplet helium atoms using a single beam optical dipole trap with moderate power of less than 3 W. Our scheme is based on RF-induced evaporative cooling in a quadr upole magnetic trap and transfer to a single beam optical dipole trap that is located below the magnetic trap center. We transfer 1x10^6 atoms into the optical dipole trap, with an initial temperature of 14 mu K, and observe efficient forced evaporative cooling both in a hybrid trap, in which the quadrupole magnetic trap operates just below the levitation gradient, and in the pure optical dipole trap, reaching the onset of BEC with 2x10^5 atoms and a pure BEC of 5x10^4 atoms. Our work shows that a single beam hybrid trap can be applied for a light atom, for which evaporative cooling in the quadrupole magnetic trap is strongly limited by Majorana spin-flips, and the very small levitation gradient limits the axial confinement in the hybrid trap.
We have obtained accurate ab initio quartet potentials for the diatomic metastable triplet helium + alkali-metal (Li, Na, K, Rb) systems, using all-electron restricted open-shell coupled cluster singles and doubles with noniterative triples correctio ns [CCSD(T)] calculations and accurate calculations of the long-range $C_6$ coefficients. These potentials provide accurate ab initio quartet scattering lengths, which for these many-electron systems is possible, because of the small reduced masses and shallow potentials that results in a small amount of bound states. Our results are relevant for ultracold metastable triplet helium + alkali-metal mixture experiments.
107 - S.-W. Su , S.-C. Gou , I.-K. Liu 2014
We theoretically explore atomic Bose-Einstein condensates (BECs) subject to position-dependent spin-orbit coupling (SOC). This SOC can be produced by cyclically laser coupling four internal atomic ground (or metastable) states in an environment where the detuning from resonance depends on position. The resulting spin-orbit coupled BEC phase-separates into domains, each of which contain density modulations - stripes - aligned either along the x or y direction. In each domain, the stripe orientation is determined by the sign of the local detuning. When these stripes have mismatched spatial periods along domain boundaries, non-trivial topological spin textures form at the interface, including skyrmions-like spin vortices and anti-vortices. In contrast to vortices present in conventional rotating BECs, these spin-vortices are stable topological defects that are not present in the corresponding homogenous stripe-phase spin-orbit coupled BECs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا