ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a numerical investigation of the tidal disruption of white dwarfs by moderately massive black holes, with particular reference to the centers of dwarf galaxies and globular clusters. Special attention is given to the fate of white dwarfs o f all masses that approach the black hole close enough to be disrupted and severely compressed to such extent that explosive nuclear burning can be triggered. Consistent modeling of the gas dynamics together with the nuclear reactions allows for a realistic determination of the explosive energy release. In the most favorable cases, the nuclear energy release may be comparable to that of typical type Ia supernovae. Although the explosion will increase the mass fraction escaping on hyperbolic orbits, a good fraction of the debris remains to be swallowed by the hole, causing a bright soft X-ray flare lasting for about a year. Such transient signatures, if detected, would be a compelling testimony for the presence of a moderately mass black hole (below $10^5 M_odot$).
We discuss the results of 3D simulations of tidal disruptions of white dwarfs by moderate-mass black holes as they may exist in the cores of globular clusters or dwarf galaxies. Our simulations follow self-consistently the hydrodynamic and nuclear ev olution from the initial parabolic orbit over the disruption to the build-up of an accretion disk around the black hole. For strong enough encounters (pericentre distances smaller than about 1/3 of the tidal radius) the tidal compression is reversed by a shock and finally results in a thermonuclear explosion. These explosions are not restricted to progenitor masses close to the Chandrasekhar limit, we find exploding examples throughout the whole white dwarf mass range. There is, however, a restriction on the masses of the involved black holes: black holes more massive than $2times 10^5$ M$_odot$ swallow a typical 0.6 M$_odot$ dwarf before their tidal forces can overwhelm the stars self-gravity. Therefore, this mechanism is characteristic for black holes of moderate masses. The material that remains bound to the black hole settles into an accretion disk and produces an X-ray flare close to the Eddington limit of $L_{rm Edd} simeq 10^{41} {rm erg/s} M_{rm bh}/1000 M$_odot$), typically lasting for a few months. The combination of a peculiar thermonuclear supernova together with an X-ray flare thus whistle-blows the existence of such moderate-mass black holes. The next generation of wide field space-based instruments should be able to detect such events.
The existence of supermassive black holes lurking in the centers of galaxies and of stellar binary systems containing a black hole with a few solar masses has been established beyond reasonable doubt. The idea that black holes of intermediate masses ($sim 1000$ msun) may exist in globular star clusters has gained credence over recent years but no conclusive evidence has been established yet. An attractive feature of this hypothesis is the potential to not only disrupt solar-type stars but also compact white dwarf stars. In close encounters the white dwarfs can be sufficiently compressed to thermonuclearly explode. The detection of an underluminous thermonuclear explosion accompanied by a soft, transient X-ray signal would be compelling evidence for the presence of intermediate mass black holes in stellar clusters. In this paper we focus on the numerical techniques used to simulate the entire disruption process from the initial parabolic orbit, over the nuclear energy release during tidal compression, the subsequent ejection of freshly synthesized material and the formation process of an accretion disk around the black hole.
Suggestive evidence has accumulated that intermediate mass black holes (IMBH) exist in some globular clusters. As stars diffuse in the cluster, some will inevitable wander sufficiently close to the hole that they suffer tidal disruption. An attractiv e feature of the IMBH hypothesis is its potential to disrupt not only solar-type stars but also compact white dwarf stars. Attention is given to the fate of white dwarfs that approach the hole close enough to be disrupted and compressed to such extent that explosive nuclear burning may be triggered. Precise modeling of the dynamics of the encounter coupled with a nuclear network allow for a realistic determination of the explosive energy release, and it is argued that ignition is a natural outcome for white dwarfs of all varieties passing well within the tidal radius. Although event rates are estimated to be significantly less than the rate of normal Type Ia supernovae, such encounters may be frequent enough in globular clusters harboring an IMBH to warrant a search for this new class of supernova.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا