ﻻ يوجد ملخص باللغة العربية
We discuss the results of 3D simulations of tidal disruptions of white dwarfs by moderate-mass black holes as they may exist in the cores of globular clusters or dwarf galaxies. Our simulations follow self-consistently the hydrodynamic and nuclear evolution from the initial parabolic orbit over the disruption to the build-up of an accretion disk around the black hole. For strong enough encounters (pericentre distances smaller than about 1/3 of the tidal radius) the tidal compression is reversed by a shock and finally results in a thermonuclear explosion. These explosions are not restricted to progenitor masses close to the Chandrasekhar limit, we find exploding examples throughout the whole white dwarf mass range. There is, however, a restriction on the masses of the involved black holes: black holes more massive than $2times 10^5$ M$_odot$ swallow a typical 0.6 M$_odot$ dwarf before their tidal forces can overwhelm the stars self-gravity. Therefore, this mechanism is characteristic for black holes of moderate masses. The material that remains bound to the black hole settles into an accretion disk and produces an X-ray flare close to the Eddington limit of $L_{rm Edd} simeq 10^{41} {rm erg/s} M_{rm bh}/1000 M$_odot$), typically lasting for a few months. The combination of a peculiar thermonuclear supernova together with an X-ray flare thus whistle-blows the existence of such moderate-mass black holes. The next generation of wide field space-based instruments should be able to detect such events.
Suggestive evidence has accumulated that intermediate mass black holes (IMBH) exist in some globular clusters. As stars diffuse in the cluster, some will inevitable wander sufficiently close to the hole that they suffer tidal disruption. An attractiv
The explosion energy of thermonuclear (Type Ia) supernovae is derived from the difference in nuclear binding energy liberated in the explosive fusion of light fuel nuclei, predominantly carbon and oxygen, into more tightly bound nuclear ash dominated
Thermonuclear (Type Ia) supernovae are bright stellar explosions, the light curves of which can be calibrated to allow for use as standard candles for measuring cosmological distances. Contemporary research investigates how the brightness of an event
Thermonuclear supernovae result when interaction with a companion reignites nuclear fusion in a carbon-oxygen white dwarf, causing a thermonuclear runaway, a catastrophic gain in pressure, and the disintegration of the whole white dwarf. It is usuall
Thermonuclear supernovae (SNe), a subset of which are the highly important SNe Type,Ia, remain one of the more poorly understood phenomena known to modern astrophysics. In recent years, the single degenerate helium (He) donor channel, where a white d